https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=29429149&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 2942914920220712
1976-91482622018Mar01Biomolecules & therapeuticsBiomol Ther (Seoul)Carbon Monoxide Ameliorates 6-Hydroxydopamine-Induced Cell Death in C6 Glioma Cells.175181175-18110.4062/biomolther.2018.009Carbon monoxide (CO) is well-known as toxic gas and intrinsic signaling molecule such as neurotransmitter and blood vessel relaxant. Recently, it has been reported that low concentration of CO exerts therapeutic actions under various pathological conditions including liver failure, heart failure, gastric cancer, and cardiac arrest. However, little has been known about the effect of CO in neurodegenerative diseases like Parkinson's disease (PD). To test whether CO could exert a beneficial action during oxidative cell death in PD, we examined the effects of CO on 6-hydroxydopamine (6-OHDA)-induced cell death in C6 glioma cells. Treatment of CO-releasing molecule-2 (CORM-2) significantly attenuated 6-OHDA-induced apoptotic cell death in a dose-dependent manner. CORM-2 treatment decreased Bax/Bcl2 ratio and caspase-3 activity, which had been increased by 6-OHDA. CORM-2 increased phosphorylation of NF-E2-related factor 2 (Nrf2) which is a transcription factor regulating antioxidant proteins. Subsequently, CORM-2 also increased the expression of heme oxygenase-1 and superoxide dismutases (CuZnSOD and MnSOD), which were antioxidant enzymes regulated by Nrf2. These results suggest that CO released by CORM-2 treatment may have protective effects against oxidative cell death in PD through the potentiation of cellular adaptive survival responses via activation of Nrf2 and upregulation of heme oxygenase-1, leading to increasing antioxidant defense capacity.MoonHyewonHCollege of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.JangJung-HeeJHDepartment of Pharmacology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea.JangTae ChangTCDepartment of Emergency Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea.ParkGyu HwanGHCollege of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.engJournal Article
Korea (South)Biomol Ther (Seoul)1014728321976-9148Biomol Ther (Seoul). 2022 Jul 1;30(4):389. doi: 10.4062/biomolther.2022.00335672216COHO-1NeuroprotectionNrf2PDSOD
201811820181192018122201821360201821361201821260201831ppublish29429149PMC583949610.4062/biomolther.2018.009biomolther.2018.009Babu D, Leclercq G, Goossens V, Remijsen Q, Vandenabeele P, Motterlini R, Lefebvre RA. Antioxidant potential of CORM-A1 and resveratrol during TNF-alpha/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells. Toxicol Appl Pharmacol. 2015;288:161–178. doi: 10.1016/j.taap.2015.07.007.10.1016/j.taap.2015.07.00726187750Basuroy S, Leffler CW, Parfenova H. CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am J Physiol Cell Physiol. 2013;304:C1105–C1115. doi: 10.1152/ajpcell.00023.2013.10.1152/ajpcell.00023.2013PMC367717623576575Blandini F, Armentero MT, Martignoni E. The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord. 2008;14:S124–S129. doi: 10.1016/j.parkreldis.2008.04.015.10.1016/j.parkreldis.2008.04.01518595767Caumartin Y, Stephen J, Deng JP, Lian D, Lan Z, Liu W, Garcia B, Jevnikar AM, Wang H, Cepinskas G, Luke PP. Carbon monoxide-releasing molecules protect against ischemia-reperfusion injury during kidney transplantation. Kidney Int. 2011;79:1080–1089. doi: 10.1038/ki.2010.542.10.1038/ki.2010.54221270767Chapman JT, Otterbein LE, Elias JA, Choi AM. Carbon monoxide attenuates aeroallergen-induced inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 2001;281:L209–L216. doi: 10.1152/ajplung.2001.281.1.L209.10.1152/ajplung.2001.281.1.L20911404264Chi PL, Lin CC, Chen YW, Hsiao LD, Yang CM. CO induces Nrf2-dependent heme oxygenase-1 transcription by cooperating with Sp1 and c-Jun in rat brain astrocytes. Mol Neurobiol. 2015;52:277–292. doi: 10.1007/s12035-014-8869-4.10.1007/s12035-014-8869-425148934Choi YK. Role of carbon monoxide in neurovascular repair processing. Biomol Ther (Seoul) 2017 doi: 10.4062/biomolther.2017.144. [Epub ahead of print].10.4062/biomolther.2017.144PMC583948629223144Christie AE, Fontanilla TM, Roncalli V, Cieslak MC, Lenz PH. Diffusible gas transmitter signaling in the copepod crustacean Calanus finmarchicus: identification of the biosynthetic enzymes of nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) using a de novo assembled transcriptome. Gen Comp Endocrinol. 2014;202:76–86. doi: 10.1016/j.ygcen.2014.04.003.10.1016/j.ygcen.2014.04.003PMC404166024747481Fledderus JO, Goldschmeding R. Nrf2 implicated as a novel therapeutic target for renal regeneration after acute kidney injury. Nephrol Dial Transplant. 2013;28:1969–1971. doi: 10.1093/ndt/gft202.10.1093/ndt/gft20224014316Ghattas MH, Chuang LT, Kappas A, Abraham NG. Protective effect of HO-1 against oxidative stress in human hepatoma cell line (HepG2) is independent of telomerase enzyme activity. Int J Biochem Cell Biol. 2002;34:1619–1628. doi: 10.1016/S1357-2725(02)00097-3.10.1016/S1357-2725(02)00097-312379283Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97:1634–1658. doi: 10.1111/j.1471-4159.2006.03907.x.10.1111/j.1471-4159.2006.03907.x16805774Herman ZS. Carbon monoxide: a novel neural messenger or putative neurotransmitter? Pol J Pharmacol. 1997;49:1–4.9431545Hettiarachchi N, Dallas M, Al-Owais M, Griffiths H, Hooper N, Scragg J, Boyle J, Peers C. Heme oxygenase-1 protects against Alzheimer’s amyloid-beta(1–42)-induced toxicity via carbon monoxide production. Cell Death Dis. 2014;5:e1569. doi: 10.1038/cddis.2014.529.10.1038/cddis.2014.529PMC445416325501830Innamorato NG, Rojo AI, Garcia-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A. The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol. 2008;181:680–689. doi: 10.4049/jimmunol.181.1.680.10.4049/jimmunol.181.1.68018566435Jamal Uddin M, Joe Y, Kim S-K, Jeong SO, Ryter SW, Pae H-O, Chung HT. IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production. Cell Mol Immunol. 2016;13:170–179. doi: 10.1038/cmi.2015.02.10.1038/cmi.2015.02PMC478662425640654Joshi G, Johnson JA. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat CNS Drug Discov. 2012;7:218–229. doi: 10.2174/157488912803252023.10.2174/157488912803252023PMC362503522742419Kaizaki A, Tanaka S, Ishige K, Numazawa S, Yoshida T. The neuroprotective effect of heme oxygenase (HO) on oxidative stress in HO-1 siRNA-transfected HT22 cells. Brain Res. 2006;1108:39–44. doi: 10.1016/j.brainres.2006.06.011.10.1016/j.brainres.2006.06.01116828716Kalia LV, Lang AE. Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol. 2016;12:65–66. doi: 10.1038/nrneurol.2015.249.10.1038/nrneurol.2015.24926782330Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, Nunomura A, Castellani RJ, Perry G, Smith MA, Itoyama Y. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis. 2002;9:244–248. doi: 10.1006/nbdi.2002.0466.10.1006/nbdi.2002.046611895375Kim DS, Chae SW, Kim HR, Chae HJ. CO and bilirubin inhibit doxorubicin-induced cardiac cell death. Immunopharmacol Immunotoxicol. 2009;31:64–70. doi: 10.1080/08923970802354762.10.1080/0892397080235476218756386Lian S, Xia Y, Ung TT, Khoi PN, Yoon HJ, Kim NH, Kim KK, Jung YD. Carbon monoxide releasing molecule-2 ameliorates IL-1beta-induced IL-8 in human gastric cancer cells. Toxicology. 2016;361–362:24–38. doi: 10.1016/j.tox.2016.07.003.10.1016/j.tox.2016.07.00327393034Magierowski M, Magierowska K, Szmyd J, Surmiak M, Sliwowski Z, Kwiecien S, Brzozowski T. Hydrogen sulfide and carbon monoxide protect gastric mucosa compromised by mild stress against alendronate injury. Dig Dis Sci. 2016;61:3176–3189. doi: 10.1007/s10620-016-4280-5.10.1007/s10620-016-4280-5PMC506729227541924McCoole MD, D’Andrea BT, Baer KN, Christie AE. Genomic analyses of gas (nitric oxide and carbon monoxide) and small molecule transmitter (acetylcholine, glutamate and GABA) signaling systems in Daphnia pulex. Comp Biochem Physiol Part D Genomics Proteomics. 2012;7:124–160. doi: 10.1016/j.cbd.2012.01.001.10.1016/j.cbd.2012.01.00122305610Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med. 1994;17:235–248. doi: 10.1016/0891-5849(94)90079-5.10.1016/0891-5849(94)90079-57982629Mizuguchi S, Capretta A, Suehiro S, Nishiyama N, Luke P, Potter RF, Fraser DD, Cepinskas G. Carbon monoxide-releasing molecule CORM-3 suppresses vascular endothelial cell SOD-1/SOD-2 activity while up-regulating the cell surface levels of SOD-3 in a heparin-dependent manner. Free Radic Biol Med. 2010;49:1534–1541. doi: 10.1016/j.freeradbiomed.2010.08.017.10.1016/j.freeradbiomed.2010.08.01720797432Onyiah JC, Sheikh SZ, Maharshak N, Steinbach EC, Russo SM, Kobayashi T, Mackey LC, Hansen JJ, Moeser AJ, Rawls JF, Borst LB, Otterbein LE, Plevy SE. Carbon monoxide and heme oxygenase-1 prevent intestinal inflammation in mice by promoting bacterial clearance. Gastroenterology. 2013;144:789–798. doi: 10.1053/j.gastro.2012.12.025.10.1053/j.gastro.2012.12.025PMC360870023266559Pietrus M, Paprota P, Radziszewska R, Huras H, Ludwin A, Wiechec M, Nocun A, Ossowski P, Knafel A, Kialka M, Klyszejko-Molska J, Pitynski K, Zalustowicz A, Banas T. Carbon monoxide poisoning in pregnant woman. Przegl Lek. 2015;72:482–484.26827573Qin S, Du R, Yin S, Liu X, Xu G, Cao W. Nrf2 is essential for the anti-inflammatory effect of carbon monoxide in LPS-induced inflammation. Inflamm Res. 2015;64:537–548. doi: 10.1007/s00011-015-0834-9.10.1007/s00011-015-0834-926049867Ruvolo PP, Deng X, Carr BK, May WS. A functional role for mitochondrial protein kinase Calpha in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem. 1998;273:25436–25442. doi: 10.1074/jbc.273.39.25436.10.1074/jbc.273.39.254369738012Schipper HM. Glial HO-1 expression, iron deposition and oxidative stress in neurodegenerative diseases. Neurotox Res. 1999;1:57–70. doi: 10.1007/BF03033339.10.1007/BF0303333912835114Schipper HM, Liberman A, Stopa EG. Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol. 1998;150:60–68. doi: 10.1006/exnr.1997.6752.10.1006/exnr.1997.67529514830Shiraga H, Pfeiffer RF, Ebadi M. The effects of 6-hydroxydopamine and oxidative stress on the level of brain metallothionein. Neurochem Int. 1993;23:561–566. doi: 10.1016/0197-0186(93)90104-D.10.1016/0197-0186(93)90104-D8281125Soni H, Pandya G, Patel P, Acharya A, Jain M, Mehta AA. Beneficial effects of carbon monoxide-releasing molecule-2 (CORM-2) on acute doxorubicin cardiotoxicity in mice: role of oxidative stress and apoptosis. Toxicol Appl Pharmacol. 2011;253:70–80. doi: 10.1016/j.taap.2011.03.013.10.1016/j.taap.2011.03.01321443895Suliman HB, Carraway MS, Ali AS, Reynolds CM, Welty-Wolf KE, Piantadosi CA. The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J Clin Invest. 2007;117:3730–3741.PMC208213718037988Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA. 1968;61:748–755. doi: 10.1073/pnas.61.2.748.10.1073/pnas.61.2.748PMC2252234386763Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH. Carbon monoxide: a putative neural messenger. Science. 1993;259:381–384. doi: 10.1126/science.7678352.10.1126/science.76783527678352Wegiel B, Gallo D, Csizmadia E, Harris C, Belcher J, Vercellotti GM, Penacho N, Seth P, Sukhatme V, Ahmed A, Pandolfi PP, Helczynski L, Bjartell A, Persson JL, Otterbein LE. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Res. 2013;73:7009–7021. doi: 10.1158/0008-5472.CAN-13-1075.10.1158/0008-5472.CAN-13-1075PMC385159124121491Wei Y, Chen P, de Bruyn M, Zhang W, Bremer E, Helfrich W. Carbon monoxide-releasing molecule-2 (CORM-2) attenuates acute hepatic ischemia reperfusion injury in rats. BMC Gastroenterol. 2010;10:42. doi: 10.1186/1471-230X-10-42.10.1186/1471-230X-10-42PMC287360120444253Xie Z, Han P, Cui Z, Wang B, Zhong Z, Sun Y, Yang G, Sun Q, Bian L. Pretreatment of mouse neural stem cells with carbon monoxide-releasing molecule-2 interferes with NF-κB p65 signaling and suppresses iron overload-induced apoptosis. Cell Mol Neurobiol. 2016;36:1343–1351. doi: 10.1007/s10571-016-0333-8.10.1007/s10571-016-0333-826961543Yang YC, Huang YT, Hsieh CW, Yang PM, Wung BS. Carbon monoxide induces heme oxygenase-1 to modulate STAT3 activation in endothelial cells via S-glutathionylation. PLoS ONE. 2014;9:e100677. doi: 10.1371/journal.pone.0100677.10.1371/journal.pone.0100677PMC411455325072782Yao L, Wang P, Chen M, Liu Y, Zhou L, Fang X, Huang Z. Carbon monoxide-releasing molecules attenuate postresus-citation myocardial injury and protect cardiac mitochondrial function by reducing the production of mitochondrial reactive oxygen species in a rat model of cardiac arrest. J Cardiovasc Pharmacol Ther. 2015;20:330–341. doi: 10.1177/1074248414559837.10.1177/107424841455983725420477Zhou S, Ye W, Shao Q, Zhang M, Liang J. Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit Rev Oncol Hematol. 2013;88:706–715. doi: 10.1016/j.critrevonc.2013.09.001.10.1016/j.critrevonc.2013.09.00124126138