Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dengue virus (DENV) infection is a major public health problem worldwide; however, specific antiviral drugs against it are not available. Hence, identifying effective antiviral agents for the prevention of DENV infection is important. In this study, we showed that the reportedly highly biologically active green-tea component epigallocatechin gallate (EGCG) inhibited dengue virus infection regardless of infecting serotype, but no or minimal inhibition was observed with other flaviviruses, including Japanese encephalitis virus, yellow fever virus, and Zika virus. EGCG exerted its antiviral effect mainly at the early stage of infection, probably by interacting directly with virions to prevent virus infection. Our results suggest that EGCG specifically targets DENV and might be used as a lead structure to develop an antiviral drug for use against the virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-018-3769-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!