Overexpression of germin-like protein GmGLP10 enhances resistance to Sclerotinia sclerotiorum in transgenic tobacco.

Biochem Biophys Res Commun

Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics & Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin 150030, China. Electronic address:

Published: February 2018

Germin-like proteins (GLPs) are ubiquitous water-soluble glycoproteins that are located in the extracellular matrix. These proteins have been reported to play vital roles in diverse biological processes. In the present study, a GLP in soybean (Glycine max L. Merr.), GmGLP10, was characterized. Sequence analysis revealed that the GmGLP10 gene (GenBank Accession Number EU916258) encodes a 213-amino acid (aa) protein, which contains a N-terminal signal peptide at 1-22 aa and is highly homologous to the members of the GER2 subfamily. GmGLP10 was highly expressed in the leaves, but very faint in the roots. The expression of GmGLP10 was induced by methyl jasmonate (MeJA), ethylene (ET), salicylic acid (SA), oxalate acid (OA), and the infection of Sclerotinia sclerotiorum. Overexpression of GmGLP10 in transgenic tobacco significantly enhanced tolerance to OA and S. sclerotiorum infection. Moreover, higher levels of HO and the upregulated expression of a set of plant defense-related genes and HR (hypersensitive response)-associated genes were detected in the transgenic plants. These results suggest that GmGLP10 functions as a positive regulator of resistance to S. sclerotiorum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.02.046DOI Listing

Publication Analysis

Top Keywords

sclerotinia sclerotiorum
8
transgenic tobacco
8
gmglp10
7
overexpression germin-like
4
germin-like protein
4
protein gmglp10
4
gmglp10 enhances
4
enhances resistance
4
resistance sclerotinia
4
sclerotiorum transgenic
4

Similar Publications

Unveiling the role of microRNAs in nonhost resistance to Sclerotinia sclerotiorum: Rice-specific microRNAs attack the pathogen via cross-kingdom RNAi.

J Integr Plant Biol

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.

The development of rapeseed with high resistance against the pathogen Sclerotinia sclerotiorum is impeded by the lack of effective resistance resources within host species. Unraveling the molecular basis of nonhost resistance (NHR) holds substantial value for resistance improvement in crops. In the present study, small RNA sequencing and transcriptome sequencing were carried out between rice (a nonhost species of S.

View Article and Find Full Text PDF

Efficacy of SC5 Fermentation Filtrate in Inhibiting the Growth and Development in Sunflower.

Int J Mol Sci

December 2024

Institute of Animal Husbandry, Pasture and Green Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.

is a destructive pathogen responsible for sunflower sclerotinia rot, resulting in substantial yield and economic losses worldwide. species have demonstrated the capacity to inhibit plant pathogen growth through the production of secondary metabolites. However, there are fewer recent studies focusing on the application of metabolites in inhibiting growth and development and controlling sunflower sclerotinia rot disease.

View Article and Find Full Text PDF

Insights into the biogenic production of nanocomposites of NiO-chitosan for wastewater remediation.

Int J Biol Macromol

January 2025

Department of Chemistry, Career Point University, Hamirpur Campus, H.P., India; CNST, Career Point University, Hamirpur Campus, H.P., India. Electronic address:

In our study, we have tried to enhance the biological qualities of nickel oxide nanoparticles and nanocomposites which were prepared using the extract of Aegle marmelos tree leaves and chitosan biopolymer. For in-depth study of the fabricated samples, numerous physiochemical approaches were utilized. The analysis used consists of field emission scanning electron microscopy with energy dispersive X-ray analysis and photoluminescence, X-ray diffraction, UV-visible spectroscopy, and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

Comparative Genomic Analysis of BRI3 Reveals Genes Potentially Associated with Efficient Antagonism of (Lib.) de Bary.

Genes (Basel)

December 2024

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Background/objectives: has recently received increased attention as a potential biological agent because of its broad-spectrum antagonistic capacity against harmful bacteria and fungi. This study aims to thoroughly analyze the genomic characteristics of BRI3, thereby providing theoretical groundwork for the agronomic utilization of this strain.

Methods: In this work, we evaluated the beneficial traits of the newly isolated strain BRI3 via in vitro experiments, whole-genome sequencing, functional annotation, and comparative genomic analysis.

View Article and Find Full Text PDF

Brassica villosa is characterized by its dense hairiness and high resistance against the fungal pathogen Sclerotinia sclerotiorum. Information on the genetic and molecular mechanisms governing trichome development in B. villosa is rare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!