Electrostatic and hydrophobic interactions of lipid-associated α-synuclein: The role of a water-limited interfaces in amyloid fibrillation.

Biochim Biophys Acta Biomembr

Department of Chemistry, Korea University, Seoul 02841, Republic of Korea. Electronic address:

Published: September 2018

AI Article Synopsis

  • Human α-synuclein (αSyn) is an intrinsically disordered protein involved in neurotransmitter trafficking, but its roles in brain cells are not fully understood.
  • The protein can aggregate into amyloid forms linked to diseases, and this self-assembly is influenced by its interactions with lipid membranes, particularly in low-water environments.
  • The review focuses on the molecular dynamics of αSyn's interactions with lipid membranes and water, examining how these factors contribute to its self-assembly and potential pathological functions.

Article Abstract

Human α‑synuclein (αSyn) is an intrinsically disordered protein (IDP) whose biological and pathological functions in brain neuronal cells have not yet been fully elucidated. αSyn intrinsically participates in aiding neurotransmitter trafficking through αSyn the association with lipid membranes. However, lipid-associated states of αSyn also induce amyloid self-assembly that is linked to the pathogenesis of various synucleinopathies. These contradicting actions arise from the limited water content near lipid-water interfaces that controls αSyn electrostatic and hydrophobic interactions. Thus, understanding the molecular interactions between αSyn and lipid membranes in the presence of water molecules is critical in elucidating the pivotal role of lipid-associated αSyn in amyloid self-assembly. In this review, we describe how the membrane interface controls electrostatic and hydrophobic interactions of lipid-associated αSyn. Moreover, membrane amyloid self-assembly of αSyn will be further discussed with regards to the structural dynamics of lipid-associated αSyn and water molecules near the interface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2018.02.007DOI Listing

Publication Analysis

Top Keywords

electrostatic hydrophobic
12
hydrophobic interactions
12
amyloid self-assembly
12
lipid-associated αsyn
12
αsyn
10
interactions lipid-associated
8
αsyn intrinsically
8
lipid membranes
8
water molecules
8
lipid-associated
5

Similar Publications

Novel D-Ribofuranosyl Tetrazoles: Synthesis, Characterization, In Vitro Antimicrobial Activity, and Computational Studies.

ACS Omega

January 2025

Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.

The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10-20 nm in diameter and 300-900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane.

View Article and Find Full Text PDF

Aiming toward a novel, noninvasive technique, with a real-time potential application in the monitoring of the complexation of steroidal neuromuscular blocker drugs Vecuronium () and Rocuronium () with sugammadex (, medication for the reversal of neuromuscular blockade induced by or in general anesthesia), we developed proof-of-principle methodology based on surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles prepared by the reduction of silver ions with hydroxylamine hydrochloride were used as SERS-active substrates, additionally aggregated with calcium nitrate as needed. The and SERS spectra were obtained within the biorelevant 5 × 10-1 × 10 M range, as well as the SERS of , though the latter was observed only in the presence of the aggregating agent.

View Article and Find Full Text PDF

Using Commercial Bio-Functional Fungal Polysaccharides to Construct Emulsion Systems by Associating with SPI.

Foods

January 2025

Guangdong Engineering Laboratory of Biomass High-Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.

Fungi polysaccharides are nutraceutical-rich compounds with bioactive properties, offering promising applications in food formulation. This study examined the non-covalent complexation of commercial polysaccharides derived from the fruiting bodies of (AA) and (GL) and soy protein isolate to enhance emulsifying properties. Complexes were examined across protein-to-polysaccharide ratios (0:1 to 1:0), pH levels (3 to 7), and heat treatment conditions.

View Article and Find Full Text PDF

Elucidating the physicochemical interactions between fibrinogen and surfactant mixtures: Implications for pharmaceutical sciences.

Int J Biol Macromol

January 2025

Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.

This study investigates the physicochemical interactions between fibrinogen (Fib), a key glycoprotein in blood clotting, and a mixture of two biologically active compounds: dicloxacillin (Diclox), an antibiotic; and cetyltrimethylammonium bromide (CTAB), a cationic surfactant. Understanding these interactions is crucial for enhancing drug delivery systems and optimizing pharmaceutical formulations. Molecular docking simulations and various spectroscopic techniques, including UV-Vis, fluorescence, and circular dichroism, were employed to explore how this mixture affects the structural and functional properties of fibrinogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!