Bone cancer pain (BCP) remains a serious complication of malignancy, which is an intractable clinical problem due to the gap in knowledge of its underlying mechanisms. Recent studies have demonstrated that the major involvement of neuroinflammation, particularly high-mobility group box 1 (HMGB1), which was identified as a late mediator of inflammation, in a number of pain conditions. However, the underlying mechanisms and functions of HMGB1 release in spinal cord, and its contributions to the development of BCP as well, are poorly understood. In the present study, we examined the theory that PKC activation lead to nuclear translocation and cytosolic HMGB1 secretion, which subsequently induces spinal neuro inflammatory responses (cytokine release) causing hyperalgesia. Our results showed that PKC activation and HMGB1 release in spinal neurons as well as mechanical allodynia in BCP rats, were all attenuated by intrathecal administration of the PKC inhibitor Gö6983 and aggravated by its activator PMA. Intrathecal administration of anti-HMGB1 antibody also alleviated hypersensitivity caused by BCP. Meanwhile, phospho-PKC and cellular HMGB1 were found co-localized in neurons, but not in microglia and astrocytes, of the spinal dorsal horns of tumor-bearing rats. Additionally, we found that HMGB1 translocation from nuclei to cytoplasm may be the consequence of PKC translocation into the nuclei, which occurred 9 days after tumor inoculation. Total p-HMGB1 as well as nuclear and cytoplasmic HMGB1 expression levels were tested in response to broad-spectrum PKC inhibitor Gö6983 or activator PMA in BCP rats. Together, these findings suggest that bone cancer related hyperalgesia is driven by PKC induced phosphorylation of HMGB1, which results in its translocation from the nucleus, and releasing from the cytosol of the dorsal horn, and the activation of spinal pro-inflammatory mediators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2018.02.003 | DOI Listing |
Comb Chem High Throughput Screen
January 2025
Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
Background And Aim: As a classical formula to invigorate blood circulation, Huoxue Tongluo Qiwei Decoction (HTQD) can effectively treat hypertensive erectile dysfunction (ED), but its exact mechanism of action is not yet clear. The goal of this research was to explore the potential mechanism of HTQD in improving hypertensive erectile dysfunction in rats through transcriptomics, network pharmacology, and associated animal experimentations.
Methods: The HTQD chemical constituents were screened using high-performance liquid chromatography- tandem mass spectrometry (HPLC-MS/MS).
Sheng Li Xue Bao
December 2024
Department of Orthopaedics, the First Hospital of Lanzhou University, Lanzhou 730000, China.
The maintenance of skeletal muscle quality involves various signal pathways that interact with each other. Under normal physiological conditions, these intersecting signal pathways regulate and coordinate the hypertrophy and atrophy of skeletal muscles, balancing the protein synthesis and degradation of muscle. When the total rate of protein synthesis exceeds that of protein degradation, the muscle gradually becomes enlarged, while when the total rate of protein synthesis is lower than that of protein degradation, the muscle shrinks.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
In multiple sclerosis (MS), microglia and macrophages within the central nervous system (CNS) play an important role in determining the balance among demyelination, neurodegeneration, and myelin repair. Phagocytic and regenerative functions of these CNS innate immune cells support remyelination, whereas chronic and maladaptive inflammatory activation promotes lesion expansion and disability, particularly in the progressive forms of MS. No currently approved drugs convincingly target microglia and macrophages within the CNS, contributing to the lack of therapies aimed at promoting remyelination and slowing disease progression for individuals with MS.
View Article and Find Full Text PDFNutrients
December 2024
Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
Background/objectives: Amyloid peptides, whose accumulation in the brain as senile plaques is associated with the onset of Alzheimer's disease, are also found in cerebral vessels and in circulation. In the bloodstream, amyloid peptides promote platelet adhesion, activation, oxidative stress, and thrombosis, contributing to the cardiovascular complications observed in Alzheimer's disease patients. Natural compounds, such as curcumin, are known to modulate platelet activation induced by the hemostatic stimuli thrombin and convulxin.
View Article and Find Full Text PDFMicroorganisms
November 2024
Institute of Integrative and Systems Biology, Laval University, Quebec, QC G1V 0A6, Canada.
Arctic char is a top predator in Arctic waters and is threatened by mercury pollution in the context of changing climate. Gill microbiota is directly exposed to environmental xenobiotics and play a central role in immunity and fitness. Surprisingly, there is a lack of literature studying the effect of mercury on gill microbiota.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!