Nimodipine attenuates the parkinsonian neurotoxin, MPTP-induced changes in the calcium binding proteins, calpain and calbindin.

J Chem Neuroanat

Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, 4, Raja Subodh Mullick Road, Jadavpur, 700032, India; Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala, 686009, India. Electronic address:

Published: January 2019

We have recently demonstrated neuroprotective abilities of nimodipine, an L-type voltage dependent calcium channel (VDCC) blocker in cellular and animal models of Parkinson's disease (PD). To understand the calcium regulatory mechanisms in the disease pathogenesis, the present study examined calcium regulatory proteins calbindin and calpain mRNA and protein levels employing quantitative PCR and western blot in 1-methyl-4-phenyl pyridinium ion (MPP)-treated SH-SY5Y cell lines and in the striatum of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). mRNA and protein levels of calbindin were lower, while that of calpain were higher in MPP-treated SH-SY5Y cells and MPTP-treated mouse striatum as compared to their respective controls. Nimodipine pretreatment significantly attenuated these effects in the parkinsonian neurotoxin-treated SH-SY5Y cell line and in the mouse striatum. The activities of the apoptotic mediator, caspase-3 and calpain were increased in the neurotoxin-treated groups as compared to their respective controls, which was ameliorated by nimodipine pretreatment. These results suggest that parkinsonian neurotoxin-mediated dopaminergic neuronal death might involve defects in calcium regulatory proteins that control intracellular calcium homeostasis, and these could be corrected by inhibiting L-type VDCC activity. These findings support the notion that hypertensive patients who are on long-term intake of dihydropyridine have reduced risk for PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchemneu.2018.02.001DOI Listing

Publication Analysis

Top Keywords

calcium regulatory
12
regulatory proteins
8
mrna protein
8
protein levels
8
mpp-treated sh-sy5y
8
sh-sy5y cell
8
mouse striatum
8
compared respective
8
respective controls
8
nimodipine pretreatment
8

Similar Publications

The regulatory mechanisms for beef tenderization by the calcium-independent phospholipase A activity of Peroxiredoxin 6.

Food Chem

January 2025

Lab of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China. Electronic address:

This study investigated the effect of the inhibition of the activity of Ca-independent Phospholipase A (iPLA) of Peroxiredoxin 6 (Prdx6) on beef tenderization in the early post-mortem period. Longissimus lumborum (LL) were incubated with or without the inhibitor of iPLA activity of Prdx6 (MJ33) for 1, 6, 12, 24, or 36 h, followed by incubation with or without the HO. iPLA activity, troponin T and desmin, Ca concentration, calpain-1, caspases, apoptosis rate, and cell morphology were examined.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Ca2+/calmodulin-dependent protein kinase II (CAMKII) δ subtypes (CAMK2D) on sodium iodate (NaIO3)-induced retinal degeneration in mice.

Methods: Bioinformatics analysis and Western blot experiments were used to screen the significantly differentially expressed genes in age-related macular degeneration (AMD) disease. CAMK2D knockdown and overexpression models were constructed by lentivirus (LV) infection of adult retinal pigment epithelial cell line-19 (ARPE-19) cells in vitro.

View Article and Find Full Text PDF

Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Modeling the effects of thin filament near-neighbor cooperative interactions in mammalian myocardium.

J Gen Physiol

March 2025

Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.

The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!