Nasopharyngeal carcinoma (NPC) is a head and neck cancer associated with poor prognosis. Many studies have shown that the epithelial-to-mesenchymal transition (EMT) is important in cancer progression, metastasis, and chemotherapy resistance and that microRNAs (miRNAs) play a key role in chemotherapy resistance associated with EMT. The miRNA miR-139-5p is downregulated in many human cancers and is closely related to tumor progression. The aim of this study was to investigate the ability of miR-139-5p to influence the cisplatin resistance, apoptosis, invasion and migration in NPC cells through the regulation of the EMT. We investigated these processes in parental HNE1 and cisplatin-resistant HNE1/DDP cells transfected with miR-139-5p inhibitors and mimics, respectively. Our results suggest that the upregulation of miR-139-5p expression inhibits proliferation, invasion, migration and EMT in human NPC cells. In addition, we found that miR-139-5p expression levels and DDP-induced apoptosis positively correlate in NPC cells. In conclusion, our results demonstrate that miR-139-5p can regulate the migration, invasion and DDP resistance in human NPC by modulating the EMT. The regulation of miR-139-5p levels might be a new approach to reverse EMT and DDP resistance and counteract metastasis and chemotherapy resistance in human NPC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2018.02.003DOI Listing

Publication Analysis

Top Keywords

chemotherapy resistance
12
npc cells
12
human npc
12
nasopharyngeal carcinoma
8
epithelial-to-mesenchymal transition
8
metastasis chemotherapy
8
invasion migration
8
mir-139-5p expression
8
ddp resistance
8
resistance human
8

Similar Publications

Background: Metastatic prostate cancer (PCa) has much lower survival and ultimately develops castration resistance, which expects novel targets and therapeutic approaches. As a result of iron-dependent lipid peroxidation, ferroptosis triggers programmed cell death and has been associated with castration-resistant prostate cancer (CRPC).

Subjects: To better understand how ferroptosis can be used to treat CRPC, we reviewed the following: First, ferroptosis mechanisms and characteristics.

View Article and Find Full Text PDF

Febrile neutropenia is a major complication in patients with acute leukemia or those undergoing hematopoietic stem cell transplantation (HSCT). Understanding patient characteristics and susceptibility patterns in febrile neutropenia is essential for appropriate antimicrobial therapy. First-line agents should have Pseudomonas aeruginosa coverage, but with the increase in multi-drug resistant organisms, ceftazidime-avibactam has emerged as a new therapeutic option.

View Article and Find Full Text PDF

To investigate the functional role of S100A4 in advanced colorectal carcinoma (Ad-CRC) and locally advanced rectal carcinoma (LAd-RC) receiving neoadjuvant chemoradiotherapy (NCRT). We analyzed histopathological and immunohistochemical sections from 150 patients with Ad-CRC and 177 LAd-RC patients treated with NCRT. S100A4 knockout (KO) HCT116 cells were also used.

View Article and Find Full Text PDF

Patients undergoing autologous stem cell transplantation (auto-SCT) face elevated risks of infections. Additionally, patients colonized in the gastrointestinal tract with antibiotic-resistant bacteria (ARB) are at higher risk of infection with ARB and other infections. Therefore, patients colonized with ARB before auto-SCT should present with an exceptionally high incidence of infections.

View Article and Find Full Text PDF

Background: Evans syndrome is a rare disorder characterized by the simultaneous or sequential combination of autoimmune hemolytic anemia and immunological thrombocytopenia, together with a positive direct antiglobulin test. This syndrome, which can be primary or secondary, is a rare initial manifestation of autoimmune diseases, notably systemic lupus erythematosus, with 1.7-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!