Aims: Presently, the effective antimicrobial agents have been limited by the emergence of microbial strains with multidrug resistance and biofilm formation potential. In the present study, we report remarkable antimicrobial activity of silver nanoparticles (AgNPs) synthesized from Streptomyces calidiresistens IF11 and IF17 strains, including inhibition of biofilm formation and synergistic effect of AgNPs and antibiotics against selected bacteria and yeasts. Cytotoxic effect of AgNPs on mammalian cell lines was also evaluated.

Methods And Results: Analysis of biosynthesized AgNPs by Fourier Transform Infrared Spectroscopy and transmission electron microscopy revealed their spherical shape, small size in the range of 5-50 and 5-20 nm, respectively, as well as the presence of capping agents. Study of antimicrobial activity of AgNPs against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Candida albicans and Malassezia furfur evaluated by minimum inhibitory concentration (MIC) and minimum biocidal concentration (MBC) assays revealed that MICs of AgNPs from IF11 and IF17 strains against bacteria and yeasts were found to be in the range of 16-128 and 8-256 μg ml , while MBCs were in the range of 48-192 and 32-256 μg ml respectively. AgNPs inhibited biofilm formation of microbial strains, which was tested by using crystal violet stain. The highest synergistic effect determined by fractional inhibitory index of AgNPs with antibiotic (kanamycin or tetracycline) was found against Staph. aureus; while in case of yeasts, M. furfur showed highest sensitivity to AgNPs-ketoconazole combination (FIC = 0·12). The cytotoxic activity of AgNPs towards HeLa and 3T3 cell lines was studied by MTT assay. The IC of AgNPs estimated against mouse fibroblasts was found to be 8·3 and 28·3 μg ml and, against HeLa cell line, 28·5 and 53·8 μg ml respectively.

Conclusions: It can be concluded that AgNPs synthesized from S. calidiresistens IF11 and IF17 strains have potential as an effective antimicrobial and cytotoxic agent, especially when used in combination with antibiotics/antifungal agents.

Significance And Impact Of The Study: This study indicates potential application of biogenic silver nanoparticles as an antimicrobial agent in nanomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jam.13723DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
12
biofilm formation
12
if11 if17
12
if17 strains
12
agnps
11
antimicrobial cytotoxic
8
cytotoxic activity
8
activity silver
8
effective antimicrobial
8
microbial strains
8

Similar Publications

The removal of toxic nitrophenols from the industrial wastewater is urgently needed from health, environmental and economic aspects. The present study deals with the synthesis of crosslinked vinyl polymer Poly(divinylbenzene) (poly(DVB)) through free radical polymerization technique using AIBN as initiator and acetonitrile as solvent. The prepared polymer was used as a support for silver nanoparticles via chemical reduction of silver nitrate on the polymer network.

View Article and Find Full Text PDF

In this study, the endophytic fungus Coniothyrium chaingmaiense-KUMBMDBT-25 was isolated from the healthy stem of Euphorbia tirucalli, mass cultivated by submerged fermentation, and extracted using ethyl acetate as a solvent. The extract was subjected to GC-MS analysis. The synthesized Con-AgNPs were characterized through various bioanalytical methods.

View Article and Find Full Text PDF

Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.

View Article and Find Full Text PDF

A competitive dual-mode for tetracycline antibiotics sensing based on colorimetry and surface-enhanced Raman scattering.

Biosens Bioelectron

December 2024

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China. Electronic address:

Tetracycline antibiotics (TCs) are extensively used as broad-spectrum antimicrobials. However, their excessive use and misuse have led to serious accumulation in foods and environments, posing a significant threat to human health. To solve such public issue, we have designed a novel dual-mode detection method, integrating colorimetric sensing with surface-enhanced Raman scattering (SERS) technology, for sensitive and rapid evaluation on TCs.

View Article and Find Full Text PDF

Phytometabolites, Pharmacological Effects, Ethnomedicinal Properties, and Bioeconomic Potential of Velvet Apple (Diospyros discolor Willd.): A Review.

Chem Biodivers

January 2025

Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!