Molecular Mechanisms and Therapeutic Strategies in Spinocerebellar Ataxia Type 7.

Adv Exp Med Biol

Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, (UMR7104), Institut National de la Santé et de la Recherche Médicale (U964), Illkirch, France.

Published: July 2018

Spinocerebellar Ataxia type 7 (SCA7, OMIM # 164500) is an autosomal dominant neurodegenerative disorder characterized by adult onset of progressive cerebellar ataxia and blindness. SCA7 is part of the large family of autosomal dominant cerebellar ataxias (ADCAs), and was estimated to account for 1-11.7% of ADCAs in diverse populations. The frequency of SCA7 is higher where local founder effects were observed as in Scandinavia, Korea, South Africa and Mexico. SCA7 is pathomechanistically related to the group of CAG/polyglutamine (polyQ) expansion disorders, which includes other SCAs (1-3, 6 and 17), Huntington's disease, spinal bulbar muscular atrophy and dentatorubro pallidoluysian atrophy. Two distinctive characteristics of SCA7 are the strong anticipation by which earlier onset and more severe symptoms are observed in successive generations of affected families, and the loss of visual acuity due to cone-rod dystrophy of the retina. The pathology is caused by an unstable CAG repeat expansion coding for a polyQ stretch in Ataxin-7 (ATXN7). PolyQ expansion in ATXN7 confers toxic properties and leads to selective neuronal degeneration in the cerebellum, the brain stem and the retina. Herein, we summarize the genetic, clinical and pathological features of SCA7 and review our current knowledge of pathomechanisms and preclinical studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-71779-1_9DOI Listing

Publication Analysis

Top Keywords

spinocerebellar ataxia
8
ataxia type
8
autosomal dominant
8
polyq expansion
8
sca7
6
molecular mechanisms
4
mechanisms therapeutic
4
therapeutic strategies
4
strategies spinocerebellar
4
type spinocerebellar
4

Similar Publications

Spinocerebellar ataxia (SCA) is a progressive neurodegenerative disease often accompanied by depression. This cross-sectional study investigated the prevalence of depression and the associated mental health factors in SCA patients. Eleven Thai SCA patients completed questionnaires assessing depression, anxiety, inner strengths, perceived social support, personality traits and perceived stress.

View Article and Find Full Text PDF

Assessment of Peripheral Neuropathy Using Current Perception Threshold Measurement in Patients with Spinocerebellar Ataxia Type 3.

Cerebellum

January 2025

Department of Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.

Peripheral neuropathy (PN) identified as a significant contributor to disability in Spinocerebellar ataxia type 3 (SCA3) patients. This study seeks to assess the utility of current perception threshold (CPT) measurements in evaluating PN in individuals with SCA3 and aims to identify factors influencing CPT values in SCA3 and ascertain whether these values correlate with the severity of ataxia. Ninety-four patients diagnosed with SCA3 and 44 healthy controls were recruited for this investigation.

View Article and Find Full Text PDF

Whole Blood DNA Methylation Analysis Reveals Epigenetic Changes Associated with ARSACS.

Cerebellum

January 2025

Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy.

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare inherited condition described worldwide and characterized by a wide spectrum of heterogeneity in terms of genotype and phenotype. How sacsin loss leads to neurodegeneration is still unclear, and current knowledge indicates that sacsin is involved in multiple functional mechanisms. We hence hypothesized the existence of epigenetic factors, in particular alterations in methylation patterns, that could contribute to ARSACS pathogenesis and explain the pleiotropic effects of SACS further than pathogenic mutations.

View Article and Find Full Text PDF

ATM Expression and Activation in Ataxia Telangiectasia Patients with and without Class Switch Recombination Defects.

J Clin Immunol

January 2025

Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.

Background: Ataxia telangiectasia mutated (ATM) kinase plays a critical role in DNA double-strand break (DSB) repair. Ataxia telangiectasia (A-T) patients exhibit abnormalities in immunoglobulin isotype expression and class switch recombination (CSR). This study investigates the role of residual ATM kinase expression and activity in the severity of A-T disease.

View Article and Find Full Text PDF

Background: Spinocerebellar ataxia type 3 (SCA3) is a hereditary disease caused by abnormally expanded CAG repeats in the ATXN3 gene. The study aimed to identify potential biomarkers for assessing therapeutic efficacy by investigating the associations between expanded CAG repeat size, brain and spinal cord volume loss, and motor functions in patients with SCA3.

Methods: In this prospective, cross-observational study, we analyzed 3D T1-weighted MRIs from 92 patients with SCA3 and 42 healthy controls using voxel-based morphometry and region of interest approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!