Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability to achieve simultaneous intrinsic deformation with fast response in commercially available materials that can safely contact skin continues to be an unresolved challenge for artificial actuating materials. Rather than using a microporous structure, here we show an ambient-driven actuator that takes advantage of inherent nanoscale molecular channels within a commercial perfluorosulfonic acid ionomer (PFSA) film, fabricated by simple solution processing to realize a rapid response, self-adaptive, and exceptionally stable actuation. Selective patterning of PFSA films on an inert soft substrate (polyethylene terephthalate film) facilitates the formation of a range of different geometries, including a 2D (two-dimensional) roll or 3D (three-dimensional) helical structure in response to vapor stimuli. Chemical modification of the surface allowed the development of a kirigami-inspired single-layer actuator for personal humidity and heat management through macroscale geometric design features, to afford a bilayer stimuli-responsive actuator with multicolor switching capability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807312 | PMC |
http://dx.doi.org/10.1038/s41467-018-03032-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!