Analytical and clinical validation of an LC-MS/MS method to measure thiopurine S-methyltransferase activity by quantifying d3-6-MMP.

Clin Biochem

Specialist Chemistry, Canterbury Health Laboratories, Christchurch, New Zealand. Electronic address:

Published: April 2018

Background: Identification of patients with thiopurine S-methyltransferase (TPMT) deficiency prior to thiopurine drug therapy has become routine clinical practice worldwide. To measure TPMT activity, traditional radiochemical assays have been replaced by chromatographic methods.

Method: Inspired by the increasing number of isotope labelled sources that may be of benefit for the TPMT assay, a new LC-MS/MS method for TPMT activity was developed and validated. Isotope labelled d3-S-adenosyl-l-methionine (d3-SAM) was selected for the enzymatic methylation of mercaptopurine during sample incubation; d3-6-methylmercaptopurine (d3-6-MMP) with d2-2, 8-hypoxanthine as the internal standard was quantified to ascertain individual TPMT activity.

Results: The validation of the analytical part of this method showed good linearity (coefficient of determination 0.9999 in the range of 1-500 ng/mL) with the intra-and inter-day impression CV% between 7.6% and 9.1% and 3.7% and 9.2%, respectively. Recovery ranged from 94.9% to 112.3%. The specificity of the enzymatic reaction was validated by using 108 clinical check samples. After compared with traditional radiochemical assay and genotype results, all homozygous and heterozygous deficiency clinical checks fitted into the nominal groups, inter-batch and intra-batch impression CV% were between 2.3% and 9.7%.

Conclusion: With the inclusion of isotope labelled substrate, interfering non-enzymatic methylation no longer results in potential false assignment of abnormal patients. Furthermore, the method can be applied to patients who have already been prescribed thiopurine drugs. This new LC-MS/MS is therefore a favourable clinical routine application to test TPMT activity, as it shows excellent performance in identifying patients with TPMT deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiochem.2018.02.002DOI Listing

Publication Analysis

Top Keywords

tpmt activity
12
isotope labelled
12
lc-ms/ms method
8
thiopurine s-methyltransferase
8
tpmt deficiency
8
traditional radiochemical
8
impression cv%
8
tpmt
7
analytical clinical
4
clinical validation
4

Similar Publications

Background: Thiopurine methyltransferase (TPMT) plays a crucial role in the detoxification of thiopurine drugs, including the antimetabolites azathioprine and 6-mercaptopurine (6-MP) used to treat autoimmune diseases and various cancers. These drugs interfere with DNA synthesis by inhibiting the production of purine-containing nucleotides, leading to the death of rapidly dividing cells. TPMT inactivates thiopurine drugs by methylating at the thiol group.

View Article and Find Full Text PDF

Efficacy and safety of azathioprine in patients with Cronkhite-Canada syndrome: a case series from Peking Union Medical College Hospital.

BMC Pharmacol Toxicol

December 2024

Department of Gastroenterology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.

Background: Cronkhite-Canada syndrome (CCS) is a rare non-hereditary chronic inflammatory disease characteristic of gastrointestinal polyps and ectodermal abnormalities. Corticosteroid therapy is the mainstay medication for CCS. Few studies indicated immunosuppressants might be the choices for patients with steroid refractory, steroid dependent or intolerant.

View Article and Find Full Text PDF

Introduction: Thiopurine drugs are metabolized by thiopurine methyltransferase (TPMT) and low TPMT activity can result in severe adverse drug reactions. Therefore, TPMT testing is recommended for individuals receiving thiopurines to reduce the risk of toxicity.

Objectives: The objectives of this study were to assess the rate of TPMT testing among individuals receiving thiopurines and explore factors associated with undergoing TPMT testing in Australia.

View Article and Find Full Text PDF
Article Synopsis
  • Azathioprine (AZA), commonly used for autoimmune disorders and organ transplants, shows potential for modern applications in viral, rheumatic, and skin diseases.
  • Advances in pharmacogenomics and nanotechnology may enhance AZA's effectiveness while reducing side effects, particularly by utilizing the active metabolites 6-mercaptopurine and 6-thioguanine.
  • The study suggests that personalized medicine approaches, including genetic testing and innovative drug delivery systems, can improve treatment outcomes for conditions like systemic lupus erythematosus and psoriasis.
View Article and Find Full Text PDF

Genetic profiling of in the Slovenian population.

Pharmacogenomics

November 2024

University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana, 1000, Slovenia.

Article Synopsis
  • This text discusses the use of pharmacogenomics to tailor thiopurine therapy based on genetic variants, initially focusing on its success in Asian populations but now recognized in European populations as well.
  • Researchers sequenced specific gene regions in Slovenian individuals to evaluate the pharmacogenetic role of variants related to thiopurine therapy for patients with acute lymphoblastic leukemia (ALL).
  • The study found several genetic variants, including one with known clinical relevance, but most variants were not linked to the dosage of thiopurines in ALL patients, suggesting the need for deeper studies in larger groups.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!