Background: Identification of patients with thiopurine S-methyltransferase (TPMT) deficiency prior to thiopurine drug therapy has become routine clinical practice worldwide. To measure TPMT activity, traditional radiochemical assays have been replaced by chromatographic methods.
Method: Inspired by the increasing number of isotope labelled sources that may be of benefit for the TPMT assay, a new LC-MS/MS method for TPMT activity was developed and validated. Isotope labelled d3-S-adenosyl-l-methionine (d3-SAM) was selected for the enzymatic methylation of mercaptopurine during sample incubation; d3-6-methylmercaptopurine (d3-6-MMP) with d2-2, 8-hypoxanthine as the internal standard was quantified to ascertain individual TPMT activity.
Results: The validation of the analytical part of this method showed good linearity (coefficient of determination 0.9999 in the range of 1-500 ng/mL) with the intra-and inter-day impression CV% between 7.6% and 9.1% and 3.7% and 9.2%, respectively. Recovery ranged from 94.9% to 112.3%. The specificity of the enzymatic reaction was validated by using 108 clinical check samples. After compared with traditional radiochemical assay and genotype results, all homozygous and heterozygous deficiency clinical checks fitted into the nominal groups, inter-batch and intra-batch impression CV% were between 2.3% and 9.7%.
Conclusion: With the inclusion of isotope labelled substrate, interfering non-enzymatic methylation no longer results in potential false assignment of abnormal patients. Furthermore, the method can be applied to patients who have already been prescribed thiopurine drugs. This new LC-MS/MS is therefore a favourable clinical routine application to test TPMT activity, as it shows excellent performance in identifying patients with TPMT deficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiochem.2018.02.002 | DOI Listing |
Metabolites
December 2024
Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
Background: Thiopurine methyltransferase (TPMT) plays a crucial role in the detoxification of thiopurine drugs, including the antimetabolites azathioprine and 6-mercaptopurine (6-MP) used to treat autoimmune diseases and various cancers. These drugs interfere with DNA synthesis by inhibiting the production of purine-containing nucleotides, leading to the death of rapidly dividing cells. TPMT inactivates thiopurine drugs by methylating at the thiol group.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
December 2024
Department of Gastroenterology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
Background: Cronkhite-Canada syndrome (CCS) is a rare non-hereditary chronic inflammatory disease characteristic of gastrointestinal polyps and ectodermal abnormalities. Corticosteroid therapy is the mainstay medication for CCS. Few studies indicated immunosuppressants might be the choices for patients with steroid refractory, steroid dependent or intolerant.
View Article and Find Full Text PDFPharmacotherapy
November 2024
The University of Sydney School of Pharmacy, Camperdown, New South Wales, Australia.
Introduction: Thiopurine drugs are metabolized by thiopurine methyltransferase (TPMT) and low TPMT activity can result in severe adverse drug reactions. Therefore, TPMT testing is recommended for individuals receiving thiopurines to reduce the risk of toxicity.
Objectives: The objectives of this study were to assess the rate of TPMT testing among individuals receiving thiopurines and explore factors associated with undergoing TPMT testing in Australia.
Naunyn Schmiedebergs Arch Pharmacol
November 2024
Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India.
Pharmacogenomics
November 2024
University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana, 1000, Slovenia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!