Three-dimensional micro-scale strain mapping in living biological soft tissues.

Acta Biomater

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Schulich School of Engineering, Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada. Electronic address:

Published: April 2018

Unlabelled: Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues.

Statement Of Significance: We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro-strain analysis that allowed for detailed qualitative and quantitative assessment of the 3D tissue kinematics. The approach presented here can also be applied to other biological tissues such as meniscus and annulus fibrosus, as well as tissue-engineered tissues for the characterization of their mechanical properties. This imaging technique opens doors for experimental and theoretical investigation on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2018.01.048DOI Listing

Publication Analysis

Top Keywords

image processing
12
processing software
12
imaging technique
12
tissue
9
characterization mechanical
8
biological tissues
8
length scales
8
novel two-photon
8
two-photon excitation
8
excitation imaging
8

Similar Publications

Evolution of Artificial Intelligence in Medical Education From 2000 to 2024: Bibliometric Analysis.

Interact J Med Res

January 2025

Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Background: Incorporating artificial intelligence (AI) into medical education has gained significant attention for its potential to enhance teaching and learning outcomes. However, it lacks a comprehensive study depicting the academic performance and status of AI in the medical education domain.

Objective: This study aims to analyze the social patterns, productive contributors, knowledge structure, and clusters since the 21st century.

View Article and Find Full Text PDF

The evolution of radiation therapy in Uganda has been a journey marked by significant milestones and persistent challenges. Since the inception of radiotherapy services in 1988-1989, there has been a concerted effort to enhance cancer treatment services. The early years were characterized by foundational developments, such as the installation of the first teletherapy units, low-dose-rate brachytherapy units, and conventional simulators, and the recognition of radiation oncologists and medical physicist professionals laid the groundwork for radiotherapy treatment modalities.

View Article and Find Full Text PDF

Multilayer Composite Electrodes for Simultaneously Improved Mechanical and Electrochemical Performance.

ACS Appl Mater Interfaces

January 2025

The Harold & Inge Marcus Department of Industrial & Manufacturing Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Structural batteries offer a transformative approach to integrate energy storage directly into the frameworks of electric vehicles and aircrafts, enabling multifunctional construction. This study presents a nacre-inspired multilayer composite electrode fabricated via the cold sintering process (CSP), achieving a balance of enhanced electrochemical performance and mechanical robustness. The composite electrode combines active electrode materials with a ductile conducting polymer-carbon-mixture phase in a layered architecture.

View Article and Find Full Text PDF

In 2021, a year before ChatGPT took the world by storm amid the excitement about generative artificial intelligence (AI), AlphaFold 2 cracked the 50-year-old protein-folding problem, predicting three-dimensional (3D) structures for more than 200 million proteins from their amino acid sequences. This accomplishment was a precursor to an unprecedented burgeoning of large language models (LLMs) in the life sciences. That was just the beginning.

View Article and Find Full Text PDF

A feature-based approach for atlas selection in automatic pelvic segmentation.

PLoS One

January 2025

Department of Radiation Physics, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.

Accurate and efficient automatic segmentation is essential for various clinical tasks such as radiotherapy treatment planning. However, atlas-based segmentation still faces challenges due to the lack of representative atlas dataset and the computational limitations of deformation algorithms. In this work, we have proposed an atlas selection procedure (subset atlas grouping approach, MAS-SAGA) which utilized both image similarity and volume features for selecting the best-fitting atlases for contour propagation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!