Computerised decision support in physical activity interventions: A systematic literature review.

Int J Med Inform

Institute of Applied Biosciences, Centre for Research and Technology Hellas, Greece; Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Greece.

Published: March 2018

Background: The benefits of regular physical activity for health and quality of life are unarguable. New information, sensing and communication technologies have the potential to play a critical role in computerised decision support and coaching for physical activity.

Objectives: We provide a literature review of recent research in the development of physical activity interventions employing computerised decision support, their feasibility and effectiveness in healthy and diseased individuals, and map out challenges and future research directions.

Methods: We searched the bibliographic databases of PubMed and Scopus to identify physical activity interventions with computerised decision support utilised in a real-life context. Studies were synthesized according to the target user group, the technological format (e.g., web-based or mobile-based) and decision-support features of the intervention, the theoretical model for decision support in health behaviour change, the study design, the primary outcome, the number of participants and their engagement with the intervention, as well as the total follow-up duration.

Results: From the 24 studies included in the review, the highest percentage (n = 7, 29%) targeted sedentary healthy individuals followed by patients with prediabetes/diabetes (n = 4, 17%) or overweight individuals (n = 4, 17%). Most randomized controlled trials reported significantly positive effects of the interventions, i.e., increase in physical activity (n = 7, 100%) for 7 studies assessing physical activity measures, weight loss (n = 3, 75%) for 4 studies assessing diet, and reductions in glycosylated hemoglobin (n = 2, 66%) for 3 studies assessing glycose concentration. Accelerometers/pedometers were used in almost half of the studies (n = 11, 46%). Most adopted decision support features included personalised goal-setting (n = 16, 67%) and motivational feedback sent to the users (n = 15, 63%). Fewer adopted features were integration with electronic health records (n = 3, 13%) and alerts sent to caregivers (n = 4, 17%). Theoretical models of decision support in health behaviour to drive the development of the intervention were not reported in most studies (n = 14, 58%).

Conclusions: Interventions employing computerised decision support have the potential to promote physical activity and result in health benefits for both diseased and healthy individuals, and help healthcare providers to monitor patients more closely. Objectively measured activity through sensing devices, integration with clinical systems used by healthcare providers and theoretical frameworks for health behaviour change need to be employed in a larger scale in future studies in order to realise the development of evidence-based computerised systems for physical activity monitoring and coaching.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmedinf.2017.12.012DOI Listing

Publication Analysis

Top Keywords

decision support
32
physical activity
32
computerised decision
20
activity interventions
12
health behaviour
12
n = 4 17%
12
studies assessing
12
physical
9
activity
9
support
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!