Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2.

Cell Rep

National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China; Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada. Electronic address:

Published: February 2018

Transient receptor potential (TRP) channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C) that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function analyses revealed similar N-C interaction in TRPP2 as well as TRPM8/-V1/-C4 via highly conserved tryptophan and lysine/arginine residues. PIP2 bound to cationic residues in TRPP3, including K568, thereby disrupting the N-C interaction and negatively regulating TRPP3. PIP2 had similar negative effects on TRPP2. Interestingly, we found that PIP2 facilitates the N-C interaction in TRPM8/-V1, resulting in channel potentiation. The intramolecular N-C interaction might represent a shared mechanism underlying the gating and PIP2 regulation of TRP channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6483072PMC
http://dx.doi.org/10.1016/j.celrep.2018.01.042DOI Listing

Publication Analysis

Top Keywords

n-c interaction
16
trp channels
8
interaction
6
pip2
5
n-c
5
direct binding
4
binding pre-s1
4
pre-s1 trp-like
4
trp-like domains
4
domains trpp
4

Similar Publications

[Pt(NCN)MeCN] (NCN = 1,3-di(2-pyridyl)benzene, MeCN = acetonitrile) forms oligomers in the ground state due to metallophilic interactions, and a Pt-Pt bond is formed with photoexcitation. Ultrafast excited-state dynamics of the [Pt(NCN)MeCN] dimer in acetonitrile is investigated by femtosecond time-resolved absorption (TA) and picosecond emission spectroscopy. The femtosecond TA signals exhibit 60 cm oscillations arising from the Pt-Pt stretching motion in the S dimer.

View Article and Find Full Text PDF

Harnessing the Electronic Spin States of Single Atoms for Precise Electromagnetic Modulation.

Adv Mater

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.

By manipulating their asymmetric electronic spin states, the unique electronic structures and unsaturated coordination environments of single atoms can be effectively harnessed to control their magnetic properties. In this research, the first investigation is presented into the regulation of magnetic properties through the electronic spin states of single atoms. Magnetic single-atom one-dimensional materials, M-N-C/ZrO (M = Fe, Co, Ni), with varying electronic spin states, are design and synthesize based on the electronic orbital structure model.

View Article and Find Full Text PDF

Understanding root development is critical for enhancing plant growth and health, and advanced technologies are essential for unraveling the complexities of these processes. In this review, we highlight select technological innovations in the study of root development, with a focus on the transformative impact of single-cell gene expression analysis. We provide a high-level overview of recent advancements, illustrating how single-cell RNA sequencing (scRNA-seq) has become a pivotal tool in plant biology.

View Article and Find Full Text PDF

Membrane interaction studies of isoniazid derivatives active against drug-resistant tuberculosis.

Eur J Pharm Sci

December 2024

Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal. Electronic address:

Tuberculosis is one of the leading causes of mortality worldwide due to the growth of multi-drug resistant strains unsusceptible to currently available therapies. Four compounds, isoniazid (INH) and three derivatives, N'-decanoylisonicotinohydrazide (INHC10), N'-(E)-(4-phenoxybenzylidene)isonicotinohydrazide (N34) and N'-(4-phenoxybenzyl)isonicotinohydrazide (N34red), were studied. Owing to their advantageous in vitro selectivity index against the primary mutation responsible for drug resistance in Mycobacterium tuberculosis (Mtb), as well as their suitable lipophilicity and interaction with human serum albumin, INHC10 and N34 were deemed promising antitubercular compounds.

View Article and Find Full Text PDF

Background: We aimed to explore the relationship between serum bicarbonate (SBC) and mortality in advanced chronic kidney disease (CKD) during three distinct treatment periods: during the pre-kidney replacement therapy (KRT) period, during the transition phase surrounding the start of KRT (transition-CKD) and during KRT.

Methods: Using the European QUALity Study on treatment in advanced CKD (EQUAL) cohort, which includes patients aged ≥65 years and estimated glomerular filtration rate (eGFR) ≤20 mL/min/1.73 m from six European countries, we explored the association between longitudinal SBC and all-cause mortality in three separate CKD populations: pre-KRT, transition-CKD and in the KRT populations, using multivariable time-dependent Cox regression models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!