2-Substituted 3-ethynylquinoxaline chromophores can be readily synthesized by a consecutive activation-alkynylation-cyclocondensation (AACC) one-pot sequence in a three-component manner. In comparison with the previously published four-component glyoxylation starting from electron-rich π-nucleophiles, the direct activation of (hetero)aryl glyoxylic acids allows the introduction of substituents that cannot be directly accessed by glyoxylation. By introducing N,N-dimethylaniline as a strong donor in the 2-position, the emission solvatochromicity of 3-ethynylquinoxalines can be considerably enhanced to cover the spectral range from blue-green to deep red-orange with a single chromophore in a relatively narrow polarity window. The diversity-oriented nature of the synthetic multicomponent reaction concept enables comprehensive investigations of structure-property relationships by Hammett correlations and Lippert-Mataga analysis, as well as the elucidation of the electronic structure of the emission solvatochromic π-conjugated donor-acceptor systems by DFT and time-dependent DFT calculations with the PBEh1PBE functional for a better reproduction of the dominant charge-transfer character of the longest wavelength absorption band.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201800079DOI Listing

Publication Analysis

Top Keywords

emission solvatochromic
8
three-component activation/alkynylation/cyclocondensation
4
activation/alkynylation/cyclocondensation aacc
4
aacc synthesis
4
synthesis enhanced
4
enhanced emission
4
solvatochromic 3-ethynylquinoxalines
4
3-ethynylquinoxalines 2-substituted
4
2-substituted 3-ethynylquinoxaline
4
3-ethynylquinoxaline chromophores
4

Similar Publications

Modulating room-temperature phosphorescence of D-π-A luminogens via methyl substitution, positional isomerism, and host-guest doping.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.

Organic room-temperature phosphorescence (RTP) luminogens have showed significant potential in the fields of diagnostics, sensing, and information encryption. However, it is difficult to achieve high RTP yield (Φ) and long RTP lifetime simultaneously. By methyl substitution, positional isomerism, and host-guest doping, three new D-π-A type luminogens named as TBTDA, 2M-TBTDA, and 3M-TBTDA were designed and synthesized, whose RTP properties were tuned and optimized.

View Article and Find Full Text PDF

Oxazolidine is a new category of stimuli-chromic compounds that has unique intelligent behaviors such as halochromism, hydrochromism, solvatochromism, and ionochromism, all of which have potential applications for designing and constructing chemosensors by using functionalized-polymer nanocarriers. Here, the poly(MMA--HEMA) based nanoparticles were synthesized by emulsion copolymerizing methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different copolymer compositions. The poly(MMA--HEMA) based nanoparticles were modified physically with tertiary amine-functionalized oxazolidine (as an intelligent pH-responsive organic dye) to prepare halochromic latex nanoparticles.

View Article and Find Full Text PDF

Less Is More: Donor Engineering of a Stable Molecular Dye for Bioimaging in the NIR-IIb Window.

J Med Chem

January 2025

Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China.

Fluorescence molecular imaging aims to enhance clarity in the region of interest, particularly in the near-infrared IIb window (NIR-IIb, 1500-1700 nm). To achieve this, we developed a novel small-molecule dye, named , based on classic cyanine dyes (heptamethine or pentamethine is essential for wavelengths beyond 1000 nm). By reducing excessive polymethine to a single methine and disrupting symmetry to form an asymmetric donor-π-acceptor (D-π-A) architecture, we enhanced the donor's electron-donating capability, yielding emission at 1088 nm.

View Article and Find Full Text PDF

Nonplanar (butterfly-shaped) phenothiazine () and its derivative's () photophysical and spectral properties have been tuned by varying the solvents and their polarity and investigated employing spectroscopic techniques such as UV-Vis, steady-state and time-resolved fluorescence, and TDDFT calculations. The UV-Vis absorption studies and TDDFT calculations reveal two distinct bands for both compounds: a strong π-π* transition at shorter wavelengths and a weaker -π* transition, which displays a little bathochromic shift in polar solvents. The detailed emission studies reveal that such dual emission is a result of the photoinduced excited-state conjugation enhancement (ESCE) process.

View Article and Find Full Text PDF

Aqueous antibacterial colloids are potential agents that kill bacteria via physical contact. Conventionally, antibacterial agents are designed to be small, cationic, or hydrophobic. However, hydrophobic materials easily aggregate in aqueous media, drastically inhibiting their activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!