Summary: Synthetic biology applies the principles of engineering to biology in order to create biological functionalities not seen before in nature. One of the most exciting applications of synthetic biology is the design of new organisms with the ability to produce valuable chemicals including pharmaceuticals and biomaterials in a greener; sustainable fashion. Selecting the right enzymes to catalyze each reaction step in order to produce a desired target compound is, however, not trivial. Here, we present Selenzyme, a free online enzyme selection tool for metabolic pathway design. The user is guided through several decision steps in order to shortlist the best candidates for a given pathway step. The tool graphically presents key information about enzymes based on existing databases and tools such as: similarity of sequences and of catalyzed reactions; phylogenetic distance between source organism and intended host species; multiple alignment highlighting conserved regions, predicted catalytic site, and active regions and relevant properties such as predicted solubility and transmembrane regions. Selenzyme provides bespoke sequence selection for automated workflows in biofoundries.
Availability And Implementation: The tool is integrated as part of the pathway design stage into the design-build-test-learn SYNBIOCHEM pipeline. The Selenzyme web server is available at http://selenzyme.synbiochem.co.uk.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881682 | PMC |
http://dx.doi.org/10.1093/bioinformatics/bty065 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Fudan University, Department of Macromolecular Science, 2205 Songhu Rd, 200438, Shanghai, CHINA.
Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Chemistry, National University of Singapore, Singapore.
Corrosion inhibitors are widely used to mitigate safety risks and economic losses in engineering, yet post-adsorption processes remain underexplored. In this study, we employed density functional theory calculations with a periodic model to investigate the dissociation mechanisms of imidazole on the Fe(100) surface. Imidazole was found to adsorb optimally in a parallel orientation, with an adsorption energy of -0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Physics, Hasanuddin University, Makassar 90245, Indonesia. Electronic address:
The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601 Anhui, China. Electronic address:
Microbial compartment provides a promising approach for achieving high-valued chemical biosynthesis from renewable feedstock. However, volatile precursor could be utilized by pathway enzyme, which may hinder and adverse the cascade catalysis within microbial cell factory. Here, a customizable compartment was developed for pathway sequestration using spatially assembled cascade catalysis reaction.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China. Electronic address:
Research Question: To investigate the underlying mechanisms driving the opposing effects of transforming growth factor-beta 1 (TGFβ1) on the proliferation of control (CESCs) and ectopic (EESCs) endometrial stromal cells.
Design: Cell proliferation assays (CCK-8 and colony formation) were employed to assess the effects of TGFβ1 on CESC and EESC proliferation. An immortalized human endometrial stromal cell line (HESC) was used to elucidate the mechanisms behind cytostatic effect of TGFβ1 and the potential role of cyclooxygenase (COX)-2 in mediating the modulation of TGFβ1 signaling.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!