Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized pathologically by amyloid beta (Aβ) deposition, microgliosis, and iron dyshomeostasis. Increased labile iron due to homeostatic dysregulation is believed to facilitate amyloidogenesis. Free iron is incorporated into aggregating amyloid peptides during Aβ plaque formation and increases potential for oxidative stress surrounding plaques. The goal of this work was to observe how brain iron levels temporally influence Aβ plaque formation, plaque iron concentration, and microgliosis. We fed humanized APP and APP knock-in mice lipophilic iron compound 3,5,5-trimethylhexanoyl ferrocene (TMHF) and iron deficient diets for twelve months. TMHF elevated brain iron by 22% and iron deficiency decreased brain iron 21% relative to control diet. Increasing brain iron with TMHF accelerated plaque formation, increased Aβ staining, and increased senile morphology of amyloid plaques. Increased brain iron was associated with increased plaque-iron loading and microglial iron inclusions. TMHF decreased IBA1+ microglia branch length while increasing roundness indicative of microglial activation. This body of work suggests that increasing mouse brain iron with TMHF potentiates a more human-like Alzheimer's disease phenotype with iron integration into Aβ plaques and associated microgliosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8mt00004b | DOI Listing |
J Trace Elem Med Biol
January 2025
Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India. Electronic address:
One of the most common diseases worldwide is anemia, which is characterized by insufficient erythrocyte production. Numerous complex factors, such as chronic diseases, genetic mutations, and nutritional inadequacies, contribute to this widespread syndrome. This review focuses specifically on anemias caused by defective hepcidin production.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Laboratory Functional Physiology and Bio-Resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba BP 382, 9000, Beja, Tunisia.
Iron overload has been shown to have deleterious effects in the brain through the formation of reactive oxygen species, which ultimately may contribute to neurodegenerative disorders. Accordingly, rodent studies have indicated that systemic administration of iron produces excess iron in the brain and results in behavioral and cognitive deficits. To what extent cognitive abilities are affected and which neurobiological mechanisms underlie those deficits remain to be more fully characterized.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA. Electronic address:
Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China. Electronic address:
One of the underlying mechanisms of epilepsy (EP), a brain disease characterized by recurrent seizures, is considered to be cell death. Disulfidptosis, a proposed novel cell death mechanism, is thought to play a part in the pathogenesis of epilepsy, but the exact role is unclear. The gene expression omnibus series (GSE) 33,000 and GSE63808 datasets were used to search for differentially expressed disulfidptosis-related molecules (DE-DRMs).
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA. Electronic address:
Parkinson's Disease (PD) is a multisystem disorder in which dysregulated neuroimmune crosstalk and inflammatory relay via the gut-blood-brain axis have been implicated in PD pathogenesis. Although alterations in circulating inflammatory cytokines and reactive oxygen species (ROS) have been associated with PD, no biomarkers have been identified that predict clinical progression or disease outcome. Gastrointestinal (GI) dysfunction, which involves perturbation of the underlying immune system, is an early and often-overlooked symptom that affects up to 80 % of individuals living with PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!