The increasing prevalence of KPC-producing Klebsiella pneumoniae strains in clinical settings has been largely attributed to dissemination of organisms of specific multilocus sequence types, such as ST258 and ST11. Compared with the ST258 clone, which is prevalent in North America and Europe, ST11 is common in China but information regarding its genetic features remains scarce. In this study, we performed detailed genetic characterization of ST11 K. pneumoniae strains by analyzing whole-genome sequences of 58 clinical strains collected from diverse geographic locations in China. The ST11 genomes were found to be highly heterogeneous and clustered into at least three major lineages based on the patterns of single-nucleotide polymorphisms. Exhibiting five different capsular types, these ST11 strains were found to harbor multiple resistance and virulence determinants such as the blaKPC-2 gene, which encodes carbapenemase, and the yersiniabactin-associated virulence genes irp, ybt and fyu. Moreover, genes encoding the virulence factor aerobactin and the regulator of the mucoid phenotype (rmpA) were detectable in six genomes, whereas genes encoding salmochelin were found in three genomes. In conclusion, our data indicated that carriage of a wide range of resistance and virulence genes constitutes the underlying basis of the high level of prevalence of ST11 in clinical settings. Such findings provide insight into the development of novel strategies for prevention, diagnosis and treatment of K. pneumoniae infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857376 | PMC |
http://dx.doi.org/10.1099/mgen.0.000149 | DOI Listing |
Microb Genom
January 2025
Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany.
Genomic data on from the African continent are currently lacking, resulting in the region being under-represented in global analyses of infection (CDI) epidemiology. For the first time in Nigeria, we utilized whole-genome sequencing and phylogenetic tools to compare isolates from diarrhoeic human patients (=142), livestock (=38), poultry manure (=5) and dogs (=9) in the same geographic area (Makurdi, north-central Nigeria) and relate them to the global population. In addition, selected isolates were tested for antimicrobial susceptibility (=33) and characterized by PCR ribotyping (=53).
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
Background: is a significant cause of healthcare-associated infections, with rising antimicrobial resistance complicating treatment. This study offers a genomic analysis of , focusing on sequence types (STs), global distribution, antibiotic resistance genes, and virulence factors in its chromosomal and plasmid DNA.
Methods: A total of 19,711 genomes were retrieved from GenBank.
Plant Dis
January 2025
Universidad de Chile, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronomicas, Casilla 1004, Santiago, Chile, 8820000;
Walnut (Juglans regia L.) is the primary nut tree cultivated in Chile, covering 44.626 ha.
View Article and Find Full Text PDFFront Microbiol
January 2025
Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany.
Brucellosis is considered a common bacterial zoonotic disease of high prevalence in countries of the Middle East and the Mediterranean region with economic and public health impact. The present study aimed to investigate the current situation of brucellosis in small ruminants reared in Médéa and Sidi Bel-Abbès provinces, north Algeria. To achieve this objective, 96 sera (77 sheep and 19 goat) and 57 milk (42 sheep and 15 goat) samples were collected from suspected infected animals and serologically analyzed by using ELISA.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.
Background: Staphylococcus aureus is one of the most common pathogens that colonizes human skin/mucous membranes, where it causes local infection that can progress to invasive infection, resulting in high morbidity and mortality worldwide. This study aimed to investigate the antibiotic susceptibility and molecular characteristics of invasive S. aureus in children and women in Southwest China from 2018 to 2023 to provide novel insights helpful in preventing and treating S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!