This article is a how-to guide on Bayesian computation using Gibbs sampling, demonstrated in the context of Latent Class Analysis (LCA). It is written for students in quantitative psychology or related fields who have a working knowledge of Bayes Theorem and conditional probability and have experience in writing computer programs in the statistical language R . The overall goals are to provide an accessible and self-contained tutorial, along with a practical computation tool. We begin with how Bayesian computation is typically described in academic articles. Technical difficulties are addressed by a hypothetical, worked-out example. We show how Bayesian computation can be broken down into a series of simpler calculations, which can then be assembled together to complete a computationally more complex model. The details are described much more explicitly than what is typically available in elementary introductions to Bayesian modeling so that readers are not overwhelmed by the mathematics. Moreover, the provided computer program shows how Bayesian LCA can be implemented with relative ease. The computer program is then applied in a large, real-world data set and explained line-by-line. We outline the general steps in how to extend these considerations to other methodological applications. We conclude with suggestions for further readings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364555 | PMC |
http://dx.doi.org/10.1080/00273171.2018.1428892 | DOI Listing |
Healthc Technol Lett
January 2025
This study aimed to develop an advanced ensemble approach for automated classification of mental health disorders in social media posts. The research question was: can an ensemble of fine-tuned transformer models (XLNet, RoBERTa, and ELECTRA) with Bayesian hyperparameter optimization improve the accuracy of mental health disorder classification in social media text. Three transformer models (XLNet, RoBERTa, and ELECTRA) were fine-tuned on a dataset of social media posts labelled with 15 distinct mental health disorders.
View Article and Find Full Text PDFCell Rep Methods
January 2025
School of Mathematical Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Center for Statistical Science, Peking University, Beijing 100871, China. Electronic address:
Single-cell assay of transposase-accessible chromatin sequencing (scATAC-seq) unbiasedly profiles genome-wide chromatin accessibility in single cells. In single-cell tumor studies, identification of normal cells or tumor clonal structures often relies on copy-number alterations (CNAs). However, CNA detection from scATAC-seq is difficult due to the high noise, sparsity, and confounding factors.
View Article and Find Full Text PDFiScience
January 2025
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Developing high-performance alloys is essential for applications in advanced electromagnetic energy conversion devices. In this study, we assess Fe-Co-Ni alloy compositions identified in our previous work through a machine learning (ML) framework, which used both multi-property ML models and multi-objective Bayesian optimization to design compositions with predicted high values of saturation magnetization, Curie temperature, and Vickers hardness. Experimental validation was conducted on two promising compositions synthesized using three different methods: arc melting, ball milling followed by spark plasma sintering (SPS), and chemical synthesis followed by SPS.
View Article and Find Full Text PDFWearable Technol
November 2024
Embedded Systems and Robotics Lab, Tezpur University, Tezpur, Assam, India.
Electromyogram (EMG) has been a fundamental approach for prosthetic hand control. However it is limited by the functionality of residual muscles and muscle fatigue. Currently, exploring temporal shifts in brain networks and accurately classifying noninvasive electroencephalogram (EEG) for prosthetic hand control remains challenging.
View Article and Find Full Text PDFPharmacoepidemiol Drug Saf
January 2025
School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada.
Introduction: Masking is a reporting bias where drug safety signals are muffled by elevated reporting of other medications in spontaneous reporting databases. While the impact of masking is often limited, its effect when using restricted designs, such as active comparators, can be consequential.
Methods: We used data from the US Food and Drugs Administration Adverse Event Reporting System (1999Q3-2013Q3) to study masking in a real-world example.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!