Aim: This work aimed to design and characterize cross-linked hyaluronic acid-itaconic acid films loaded with acetazolamide-hydroxypropyl β cyclodextrin-triethanolamine complexes.

Materials & Methods: Films were cross-linked with itaconic acid and poly(ethyleneglycol)-diglycidylether. Biopharmaceutical properties were assessed by evaluating in vitro drug release rate, biocompatibility in a human corneal epithelial cell line, bioadhesiveness with pig gastric mucin, in vivo bioadhesion and efficacy.

Results: Showed good mechanical properties and oxygen permeability. Proliferation rate of corneal cells was affected by highest acetazolamide concentration. Bioadhesive interaction exhibited a water movement from pig mucin to the film; in vivo experiments showed strong bioadhesion for 8 h and hypotensive effect for almost 20 h.

Conclusion: Experimental set showed promising performance and encouraged future studies to optimize formulation. [Formula: see text].

Download full-text PDF

Source
http://dx.doi.org/10.4155/tde-2017-0087DOI Listing

Publication Analysis

Top Keywords

films loaded
8
cross-linked hyaluronan
4
hyaluronan films
4
loaded acetazolamide-cyclodextrin-triethanolamine
4
acetazolamide-cyclodextrin-triethanolamine complexes
4
complexes glaucoma
4
glaucoma treatment
4
treatment aim
4
aim work
4
work aimed
4

Similar Publications

Platinum nanoparticles wrapped in carbon-dot-films as oxygen reduction reaction catalysts prepared by solution plasma sputtering.

Nanoscale Adv

December 2024

Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan

Fuel cells have become increasingly important in recent years because of their high energy efficiency and low environmental impact. However, key challenges remain in the widespread adoption of fuel-cell vehicles, including reducing Pt usage in catalysts and improving their durability. In this study, a high-performance Pt@carbon-dot-film core-shell catalyst was successfully synthesized using a nonequilibrium reaction field, , solution plasma (SP) process, by adjusting the electrolyte pH.

View Article and Find Full Text PDF

Myrrh oleo-gum-resin (MOGR) is a natural substance that has a rich history of medicinal use due to its anti-inflammatory, antimicrobial, and antioxidant properties. The present study reports on the fabrication and assessment of pectin and K-carrageenan composite films infused with varying proportions (0.3%, 0.

View Article and Find Full Text PDF

The adsorption of (X = Ni, Pd, and Pt) nanoclusters is simulated by using first-principles methods on MgO(100) and on a MgO monolayer supported on Ag(100), considering the presence of interfacial oxygen. On both the free-standing MgO surface and MgO/Ag, all clusters exhibit robust adhesion and negative charge transfer. molecular dynamics calculations at 200 K demonstrate the stability of the nanoparticles on the MgO/Ag support.

View Article and Find Full Text PDF

Objective: To explore weight-bearing stability of Pilon fracture fixed by external fixator.

Methods: Six ankle bone models (right side) and 4 pairs (8 ankle cadaver specimens) were selected. Pilon fracture model was prepared by using the preset osteotomy line based on Ruedi Allgower Pilon fracture type.

View Article and Find Full Text PDF

This research is focused on the formulation and testing of green visual pH-sensitive indicators based on natural extracts from Curcuma Longa (CUR) and Lambrusco wine pomace (LAM), an Italian wine variety, incorporated into rice starch/pectin/alginate matrixes for non-destructively detecting shrimps freshness in real-time. The effect of the mixed indicators and their synergic combination on the properties and performances of indicators was investigated. Both the extracts and their combination showed pronounced pH responsiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!