Polymer Solar Cells with 90% External Quantum Efficiency Featuring an Ideal Light- and Charge-Manipulation Layer.

Adv Mater

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.

Published: March 2018

Rapid progress in the power conversion efficiency (PCE) of polymer solar cells (PSEs) is beneficial from the factors that match the irradiated solar spectrum, maximize incident light absorption, and reduce photogenerated charge recombination. To optimize the device efficiency, a nanopatterned ZnO:Al O composite film is presented as an efficient light- and charge-manipulation layer (LCML). The Al O shells on the ZnO nanoparticles offer the passivation effect that allows optimal electron collection by suppressing charge-recombination loss. Both the increased refractive index and the patterned deterministic aperiodic nanostructure in the ZnO:Al O LCML cause broadband light harvesting. Highly efficient single-junction PSCs for different binary blends are obtained with a peak external quantum efficiency of up to 90%, showing certified PCEs of 9.69% and 13.03% for a fullerene blend of PTB7:PC BM and a nonfullerene blend, FTAZ:IDIC, respectively. Because of the substantial increase in efficiency, this method unlocks the full potential of the ZnO:Al O LCML toward future photovoltaic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201706083DOI Listing

Publication Analysis

Top Keywords

polymer solar
8
solar cells
8
external quantum
8
quantum efficiency
8
light- charge-manipulation
8
charge-manipulation layer
8
znoal lcml
8
efficiency
5
cells 90%
4
90% external
4

Similar Publications

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

Daytime radiative cooling (DRC) materials offer a sustainable, pollution-free passive cooling solution. Traditional DRC materials are usually white to maximize solar reflectance, but applications like textiles and buildings need more aesthetic options. Unfortunately, colorizing DRC materials often reduce cooling efficiency due to colorant sunlight absorption.

View Article and Find Full Text PDF

In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance.

View Article and Find Full Text PDF

Due to the high viscosity and low fluidity of viscous crude oil, how to effectively recover spilled crude oil is still a major global challenge. Although solar thermal absorbers have made significant progress in accelerating oil recovery, its practical application is largely restricted by the variability of solar radiation intensity, which is influenced by external environmental factors. To address this issue, this study created a new composite fiber that not only possesses solar energy conversion and storage capabilities but also facilitates crude oil removal.

View Article and Find Full Text PDF

The present article focuses on the characterization of the new biocomposites of poly(butylene succinate) (PBS) with fillers of plant origin such as onion peels (OP) and durum wheat bran WB () subjected to composting and artificial aging. The susceptibility to fungal growth, cytotoxicity and antibacterial properties were also examined. The biodegradation of the samples was investigated under normalized conditions simulating an intensive aerobic composting process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!