Noble metal nanoparticles are promising catalysts in electrochemical reactions, while understanding the relationship between the structure and reactivity of the particles is important to achieve higher efficiency of electrocatalysis, and promote the development of single-molecule electrochemistry. Electrogenerated chemiluminescence (ECL) was employed to image the catalytic oxidation of luminophore at single Au, Pt, and Au-Pt Janus nanoparticles. Compared to the monometal nanoparticles, the Janus particle structure exhibited enhanced ECL intensity and stability, indicating better catalytic efficiency. On the basis of the experimental results and digital simulation, it was concluded that a concentration difference arose at the asymmetric bimetallic interface according to different heterogeneous electron-transfer rate constants at Au and Pt. The fluid slip around the Janus particle enhanced local redox reactions and protected the particle surface from passivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201800706 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!