Anthropogenic inputs of chemical environmental contaminants are frequently associated with developing harmful algal blooms, but little is known about how estuarine phytoplankton assemblages respond to multiple, co-occurring chemical stressors in chronically disturbed habitats. The goals of this research were to establish a robust protocol for testing the effects of atrazine on estuarine phytoplankton, and then to use that protocol to compare the effects of atrazine exposure with and without nutrient enrichment on a cosmopolitan estuarine/marine alga, Dunaliella tertiolecta (Chlorophyta). Atrazine sensitivity in nutrient-replete media (96-h growth inhibition [Formula: see text]) was 159.16 μg l, but sensitivity was influenced by exposure duration, and inhibitory effects of herbicide on algal growth decreased under imbalanced nutrient regimes and low nitrogen and phosphorus supplies. These findings advance knowledge about how nutrient regimes and herbicides interact to control estuarine phytoplankton population dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-1310-1DOI Listing

Publication Analysis

Top Keywords

estuarine phytoplankton
12
dunaliella tertiolecta
8
tertiolecta chlorophyta
8
effects atrazine
8
nutrient regimes
8
assessment atrazine
4
atrazine toxicity
4
estuarine
4
toxicity estuarine
4
estuarine phytoplankter
4

Similar Publications

Climate change is shifting the timing of organismal life-history events. Although consequential food-web mismatches can emerge if predators and prey shift at different rates, research on phenological shifts has traditionally focused on single trophic levels. Here, we analysed >2000 long-term, monthly time series of phytoplankton, zooplankton, and fish abundance or biomass for the San Francisco, Chesapeake, and Massachusetts bays.

View Article and Find Full Text PDF

Spatial and temporal variation in phytoplankton assemblage and their species responses with varying salinity regimes were investigated in the Hooghly Matlah estuary, India during two annual period. The exhaustive survey in the ten sampling stations recorded 132 species of phytoplankton belonging to 95 genera. The study revealed 12 taxonomic algal groups with the dominance of class Bacillariophyceae (43 species).

View Article and Find Full Text PDF

Eutrophication remains a persistent water quality issue throughout much of the United States, leading to changes to ecosystem health in valuable coastal habitats. Oysters help to buffer against eutrophication by removing nitrogen from the water column by feeding on phytoplankton and other seston, a process referred to as "bioextraction". Recent legislation in Texas has allowed oysters to be grown off-bottom (suspended in cages).

View Article and Find Full Text PDF

The Arctic Ocean has experienced significant sea ice loss over recent decades, shifting towards a thinner and more mobile seasonal ice regime. However, the impacts of these transformations on the upper ocean dynamics of the biologically productive Pacific Arctic continental shelves remain underexplored. Here, we quantified the summer upper mixed layer depth and analyzed its interannual to decadal evolution with sea ice and atmospheric forcing, using hydrographic observations and model reanalysis from 1996 to 2021.

View Article and Find Full Text PDF

Coastal marine and estuarine systems are subject to enormous endogenous and exogenous pressures, particularly climate change, while at the same time being highly productive sources and nurseries for fish populations. Interactions between host and microbiome are increasingly recognized for their importance for fish health, with growing evidence indicating that increasing environmental pressures impact host resilience and favor the raise of opportunistic bacterial taxa. The microbial composition of the gill mucus reflects environmental conditions and represents an entry route for pathogens into the fish body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!