Malignant bone tumors, although quite rare, are one of the causes of death in children and adolescents. Surgery as a common and primary treatment for removal of virtually bone cancer cause large bone defects. Thus, restoration of hard tissues like bone and cartilage after surgical tumor resection needs efficient therapeutic approaches. Tissue engineering (TE) is a powerful approach which has provided hope for restoration, maintenance, or improvement of damaged tissues. This strategy generally supplies a three-dimensional scaffold as an active substrate to support cell recruitment, infiltration, and proliferation for neo-tissues. The scaffold mimics the natural extracellular matrix (ECM) of tissue which needs to be regenerated. The use of potent cell sources such as mesenchymal stem cells (MSCs) has also led to remarkable progresses in hard tissue regeneration. Combination of living cells and various biomaterials have continuously evolved over the past decades to improve the process of regeneration. This chapter describes various strategies used in TE and highlights recent advances in cell-loaded constructs. We herein focus on cell-based scaffold approach utilized in hard tissue engineering and parameters determining a clinically efficient outcome. Also, we attempt to identify the potential as well as shortcomings of pre-loaded scaffolds for future therapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/5584_2017_131DOI Listing

Publication Analysis

Top Keywords

hard tissue
12
mesenchymal stem
8
cell-loaded constructs
8
tissue regeneration
8
tissue engineering
8
tissue
5
robust potential
4
potential mesenchymal
4
stem cell-loaded
4
hard
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!