Combination of drugs that target different aspects of aberrant cellular processes is an efficacious treatment for hematological malignancies. Hypomethylating agents (HMAs) and inhibitors of poly(ADP-ribose) polymerases (PARPis) and histone deacetylases (HDACis) are clinically active anti-tumor drugs. We hypothesized that their combination would be synergistically cytotoxic to leukemia and lymphoma cells. Exposure of AML and lymphoma cell lines to the combination of the PARPi niraparib (Npb), the HMA decitabine (DAC) and the HDACi romidepsin (Rom) or panobinostat (Pano) synergistically inhibited cell proliferation by up to 70% via activation of the ATM pathway, increased production of reactive oxygen species, decreased mitochondrial membrane potential, and activated apoptosis. Addition of the DNA alkylating agents busulfan (Bu) and/or melphalan enhanced the anti-proliferative/cytotoxic effects of the triple-drug combination. [Npb+DAC+Rom] significantly increased the level of chromatin-bound PARP1 and DNMT1 and caused acetylation of DNA repair proteins, including Ku70, Ku80, PARP1, DDB1, ERCC1 and XPF/ERCC4. This three-drug combination down-regulated the components of the nucleosome-remodeling deacetylase (NuRD) complex, which is involved in DNA-damage repair. Addition of Bu to this combination further enhanced these effects on NuRD. The trapping of PARP1 and DNMT1 to chromatin, acetylation of DNA repair proteins, and down-regulation of NuRD may all have increased double-strand DNA break (DSB) formation as suggested by activation of the DNA-damage response, concomitantly resulting in tumor cell death. Similar synergistic cytotoxicity was observed in blood mononuclear cells isolated from patients with AML and lymphoma. Our results provide a rationale for the development of [Npb+DAC+Rom/Pano] combination therapies for leukemia and lymphoma patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790510PMC
http://dx.doi.org/10.18632/oncotarget.23386DOI Listing

Publication Analysis

Top Keywords

parp1 dnmt1
12
dna repair
12
repair proteins
12
leukemia lymphoma
12
combination
8
dnmt1 chromatin
8
lymphoma cells
8
aml lymphoma
8
acetylation dna
8
dna
5

Similar Publications

Background: Poly (ADP-Ribose) polymerase inhibitors are approved for treatment of tumors with BRCA1/2 and other homologous recombination repair (HRR) mutations. However, clinical responses are often not durable and treatment may be detrimental in advanced cancer due to excessive toxicities. Thus we are seeking alternative therapeutics to enhance PARP-directed outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • Omega-3 and omega-6 fatty acids are essential for health, but an imbalance is linked to chronic diseases like cancer; alpha-linolenic acid (ALA) shows promise as an anticancer agent.
  • Researchers used network pharmacology and molecular docking to uncover ALA's potential molecular targets, identifying 51 targets and pinpointing 10 key ones involved in cancer-related epigenetic modification.
  • ALA demonstrated strong binding with several key targets, suggesting it may act through multiple signaling pathways related to cancer development, including transcription regulation and cellular aging.
View Article and Find Full Text PDF

This study aims to identify common molecular biomarkers between amyotrophic lateral sclerosis (ALS) and depression using bioinformatics methods, in order to provide potential targets and new ideas and methods for the diagnosis and treatment of these diseases. Microarray datasets GSE139384, GSE35978 and GSE87610 were obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) between ALS and depression were identified. After screening for overlapping DEGs, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed.

View Article and Find Full Text PDF

Integrated metabolomics and network pharmacology revealing the mechanism of arsenic-induced hepatotoxicity in mice.

Food Chem Toxicol

August 2023

Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China. Electronic address:

Endemic arsenic (As) poisoning is a severe biogeochemical disease that endangers human health. Epidemiological investigations and animal experiments have confirmed the damaging effects of As on the liver, but there is an urgent need to investigate the underlying mechanisms. This study adopted a metabolomic approach using UHPLC-QE/MS to identify the different metabolites and metabolic mechanisms associated with As-induced hepatotoxicity in mice.

View Article and Find Full Text PDF

Hydroquinone (HQ), one of the main active metabolites of benzene, can induce the abnormal expression of long non-coding RNA (lncRNA). Studies have shown that lncRNA plays an important role in the occurrence of hematologic tumors induced by benzene or HQ. However, the molecular mechanism remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!