In natural ionic solids, cationic and anionic species are alternately arranged to minimize electrostatic energy. Aggregation of identical ionic species is commonly prohibited due to the repulsive, long-range nature of Coulombic interactions. Recently, we synthesized unique ionic solids, [AuCo(dppe)(D-pen)]X·nHO (dppe = 1,2-bis(diphenylphosphino)ethane, D-pen = D-penicillaminate), in which complex cations are self-assembled into a cationic supramolecular octahedron, while monovalent or divalent inorganic anions are aggregated into an anomalous anionic cluster accommodating several water molecules. This quite unusual aggregation manner originates from various molecular-level non-Coulombic interactions such as hydrogen bonds and CH-π interactions; thus, this class of ionic solids is referred to as non-Coulombic ionic solids, abbreviated as NCISs. Herein, we report that the NCISs with a peculiar charge-separated (CS) structure in a cubic lattice show a negative, isotropic electrostriction phenomenon that has never been found in any ionic solids, as well as an anomalously large relaxer-like dielectric jump phenomenon reaching to an application level of ε'/ε ~ 10. The appearance of these phenomena was explained by the cooperative dynamics of inorganic anions and dipolar water molecules in the pliable anionic clusters that are surrounded by a rather robust cationic metallosupramolecular framework with a meso-scopic scale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805720 | PMC |
http://dx.doi.org/10.1038/s41598-018-20750-1 | DOI Listing |
Nat Commun
January 2025
Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.
The unsatisfactory ionic conductivity of solid polymer electrolytes hinders their practical use as substitutes for liquid electrolytes to address safety concerns. Although various plasticizers have been introduced to improve lithium-ion conduction kinetics, the lack of microenvironment understanding impedes the rational design of high-performance polymer electrolytes. Here, we design a class of Hofmann complexes that offer continuous two-dimensional lithium-ion conduction channels with functional ligands, creating highly conductive electrolytes.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
Metal-nonaqueous solution interfaces, a key to many electrochemical technologies, including lithium metal batteries, are much less understood than their aqueous counterparts. Herein, on several metal-nonaqueous solution interfaces, we observe capacitances that are 2 orders of magnitude lower than the usual double-layer capacitance. Combining electrochemical impedance spectroscopy, atomic force microscopy, and physical modeling, we ascribe the ultralow capacitance to an interfacial layer of 10-100 nm above the metal surface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Shanghai JiaoTong University 800 Dongchuan Road, Shanghai 200240, P. R. China.
Solid polymer electrolytes (SPEs) with excellent ionic conductivity and a wide electrochemical stability window are critical for high-energy lithium metal batteries (LMBs). However, the widespread application of polymer electrolytes is severely limited by inadequate room-temperature ionic conductivity, sluggish interfacial charge transport, and uncontrolled reactions at the electrode/electrolyte interface. Herein, we present a uniform polymerized 1,3-dioxolane (PDOL) composite solid polymer electrolyte (PDOL-S/F-nano LiF CSE) that satisfies these requirements through the in situ catalytic polymerization effect of nano LiF on the polymerization of 1,3-dioxolane-based electrolytes.
View Article and Find Full Text PDFNanocrystalline formulations typically contain stabilizing additives to minimize the risk of particle growth or agglomeration. This risk is particularly relevant when the nanosuspension is converted into a solid drug product as the original state of the nanosuspension should be restored upon redispersion of the drug product in vivo. In this work, the behavior of different nonionic and anionic surfactants in solid nanocrystalline formulations and their effects on redispersibility under biorelevant conditions were investigated.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China.
The practical applications of all-solid-state batteries (ASSBs) are hindered by poor Li kinetics in electrodes due to the inadequate contact between the cathode active materials (CAMs) and solid-state electrolytes (SSEs). Therefore, improving the contact interface between CAMs and SSEs is necessary to improve the cathodic Li kinetics by increasing the lithium-ion transport sites. To address this issue, sub-micrometer LiPSCl (SU-LPSC) particles of high specific areas were utilized to fabricate cathodes with high mass loading.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!