Random structure searching has been proved to be a powerful approach to search and find the global minimum and the metastable structures. A true random sampling is in principle needed yet it would be highly time-consuming and/or practically impossible to find the global minimum for the complicated systems in their high-dimensional configuration space. Thus the implementations of reasonable constraints, such as adopting system symmetries to reduce the independent dimension in structural space and/or imposing chemical information to reach and relax into low-energy regions, are the most essential issues in the approach. In this paper, we propose the concept of "object" which is either an atom or composed of a set of atoms (such as molecules or carbonates) carrying a symmetry defined by one of the Wyckoff positions of space group and through this process it allows the searching of global minimum for a complicated system to be confined in a greatly reduced structural space and becomes accessible in practice. We examined several representative materials, including CdAs crystal, solid methanol, high-pressure carbonates (FeCO), and Si(111)-7 × 7 reconstructed surface, to demonstrate the power and the advantages of using "object" concept in random structure searching.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5006104 | DOI Listing |
BMC Med Res Methodol
January 2025
Systems Engineering & Operations Research, George Mason University, Fairfax, VA, 22030, USA.
Background: In this work, we implement a data-driven approach using an aggregation of several analytical methods to study the characteristics of COVID-19 daily infection and death time series and identify correlations and characteristic trends that can be corroborated to the time evolution of this disease. The datasets cover twelve distinct countries across six continents, from January 22, 2020 till March 1, 2022. This time span is partitioned into three windows: (1) pre-vaccine, (2) post-vaccine and pre-omicron (BA.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
Unlabelled: Despite the fact that canagliflozin (Cana), a sodium-glucose cotransporter 2 inhibitor, is an anti-diabetic medication with additional effects on the kidney, there is limited experimental data to deliberate its hepato-reno-protective potentiality. Acetaminophen (APAP) overdose remains one of the prominent contributors to hepato-renal damage.
Aim: Our study assessed the novel effect of Cana against APAP-induced toxicities.
Objectives: Patient-sharing networks based on administrative data are used to understand the organisation of healthcare. We examined the patient-sharing networks between different professionals taking care of patients with mental health or substance use problems.
Design: Register study based on the Register of Primary Health Care visits (Avohilmo) that covers all outpatient primary health care visits in Finland.
J Med Internet Res
December 2024
Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances en e-Santé - LIMICS, Inserm, Université Sorbonne Paris-Nord, Sorbonne Université, Paris, France.
Background: Artificial intelligence (AI) applied to real-world data (RWD; eg, electronic health care records) has been identified as a potentially promising technical paradigm for the pharmacovigilance field. There are several instances of AI approaches applied to RWD; however, most studies focus on unstructured RWD (conducting natural language processing on various data sources, eg, clinical notes, social media, and blogs). Hence, it is essential to investigate how AI is currently applied to structured RWD in pharmacovigilance and how new approaches could enrich the existing methodology.
View Article and Find Full Text PDFEur J Surg Oncol
December 2024
Vrije Universiteit Brussel (VUB), Molecular Imaging and Therapy Research Group, MITH, Aartselaar 103, 1090, Brussels, Belgium.
Background: Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!