Background/aims: In the human genome, more than 400 genes encode ion channels, which are ubiquitously expressed and often coexist and participate in almost all physiological processes. Therefore, ion channel blockers represent fundamental tools in discriminating the contribution of individual channel types to a physiological phenomenon. However, unspecific effects of these compounds may represent a confounding factor. Three commonly used chloride channel inhibitors, i.e. 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS), 5-nitro-2-[(3-phenylpropyl) amino]benzoic acid (NPPB) and the anti-inflammatory drug niflumic acid were tested to identify the lowest concentration effective on Cl- channels and ineffective on K+ channels.

Methods: The activity of the above mentioned compounds was tested by whole cell patch-clamp on the swelling-activated Cl- current ICl,swell and on the endogenous voltage-dependent, outwardly rectifying K+ selective current in human kidney cell lines (HEK 293/HEK 293 Phoenix).

Results: Micromolar (1-10 µM) concentrations of DIDS and NPPB could not discriminate between the Cl- and K+ selective currents. Specifically, 1 µM DIDS only affected the K+ current and 10 µM NPPB equally affected the Cl- and K+ currents. Only relatively high (0.1-1 mM) concentrations of DIDS and prolonged (5 minutes) exposure to 0.1-1 mM NPPB preferentially suppressed the Cl- current. Niflumic acid preferentially inhibited the Cl- current, but also significantly affected the K+ current. The endogenous voltage-dependent, outwardly rectifying K+ selective current in HEK 293/HEK 293 Phoenix cells was shown to arise from the Kv 3.1 channel, which is extensively expressed in brain and is involved in neurological diseases.

Conclusion: The results of the present study underscore that sensitivity of a given physiological phenomenon to the Cl- channel inhibitors NPPB, DIDS and niflumic acid may actually arise from an inhibition of Cl- channels but can also result from an inhibition of voltage-dependent K+ channels, including the Kv 3.1 channel. The use of niflumic acid as anti-inflammatory drug in patients with concomitant Kv 3.1 dysfunction may result contraindicated.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000487282DOI Listing

Publication Analysis

Top Keywords

niflumic acid
16
cl- current
12
physiological phenomenon
8
channel inhibitors
8
anti-inflammatory drug
8
cl-
8
cl- channels
8
endogenous voltage-dependent
8
voltage-dependent outwardly
8
outwardly rectifying
8

Similar Publications

YAP/TAZ Inhibitor-Based Drug Delivery System for Selective Tumor Accumulation and Cancer Combination Therapy.

Biomacromolecules

December 2024

Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.

Article Synopsis
  • YAP and TAZ are crucial coactivators often overactive in cancer, promoting tumor growth and resistance to treatments.
  • Niflumic acid (NA), a known inhibitor of YAP/TAZ, has poor effectiveness due to its short half-life, prompting the development of NA-based prodrug polymers to improve its bioavailability.
  • The selected NA polymer formed micellar nanocarriers that effectively targeted tumors and worked alongside receptor tyrosine kinase inhibitors (RTKIs) like Dasatinib, enhancing breast cancer therapy outcomes.
View Article and Find Full Text PDF

Transcriptional enhanced associate domain (TEAD) transcription factors undergo auto-palmitoylation, which is critical to mediate their function and maintain stability. Targeting the palmitate binding pocket of TEAD holds considerable promise for drug discovery, and it can be characterised into three components: a conserved cysteine, a hydrophobic main pocket, and a hydrophilic side pocket. Endogenous palmitate and several known TEAD inhibitors interact with the cysteine and hydrophobic residues in the deep hydrophobic pocket.

View Article and Find Full Text PDF

The objective of our research was to determine the effects of xanthohumol (XN), a flavonoid isolated from hops (), and the anti-inflammatory drug niflumic acid (NA), separately and in combination with each other, on the proliferation of human cancer cells. Additionally, so as to understand the mechanism underlying the anticancer properties of the tested compounds, their effects on the biophysical parameters of a model membrane were assessed. The cells were incubated with XN and NA at various concentrations, either individually or in combination with each other.

View Article and Find Full Text PDF
Article Synopsis
  • The paper investigates the effectiveness of Polynomial Regression, Extreme Gradient Boosting, and LASSO models in predicting the density of supercritical carbon dioxide and the solubility of niflumic acid based on temperature and pressure.
  • It employs the Barnacles Mating Optimizer for hyperparameter optimization, resulting in high R-squared values for PR (0.99207 for SC-CO density) compared to XGB (0.92673) and LASSO (0.81917).
  • The findings highlight the potential of these machine learning models in accurately estimating drug solubility in supercritical CO, which could be valuable for the pharmaceutical industry.
View Article and Find Full Text PDF

Binary and Ternary Inclusion Complexes of Niflumic Acid: Synthesis, Characterization, and Dissolution Profile.

Pharmaceutics

September 2024

Chemical Engineering Laboratory, Process Engineering Department, Faculty of Technology, University of Blida 1, Road of Soumaa, BP 270, Blida 09000, Algeria.

Although niflumic acid (NA) is one of the most used non-steroidal anti-inflammatory drugs, it suffers from poor solubility, low bioavailability, and significant adverse effects. To address these limitations, the complexation of NA with cyclodextrins (CDs) is a promising strategy. However, complexing CDs with low molecular weight drugs like NA can lead to low CE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!