Background/aims: In the human genome, more than 400 genes encode ion channels, which are ubiquitously expressed and often coexist and participate in almost all physiological processes. Therefore, ion channel blockers represent fundamental tools in discriminating the contribution of individual channel types to a physiological phenomenon. However, unspecific effects of these compounds may represent a confounding factor. Three commonly used chloride channel inhibitors, i.e. 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS), 5-nitro-2-[(3-phenylpropyl) amino]benzoic acid (NPPB) and the anti-inflammatory drug niflumic acid were tested to identify the lowest concentration effective on Cl- channels and ineffective on K+ channels.
Methods: The activity of the above mentioned compounds was tested by whole cell patch-clamp on the swelling-activated Cl- current ICl,swell and on the endogenous voltage-dependent, outwardly rectifying K+ selective current in human kidney cell lines (HEK 293/HEK 293 Phoenix).
Results: Micromolar (1-10 µM) concentrations of DIDS and NPPB could not discriminate between the Cl- and K+ selective currents. Specifically, 1 µM DIDS only affected the K+ current and 10 µM NPPB equally affected the Cl- and K+ currents. Only relatively high (0.1-1 mM) concentrations of DIDS and prolonged (5 minutes) exposure to 0.1-1 mM NPPB preferentially suppressed the Cl- current. Niflumic acid preferentially inhibited the Cl- current, but also significantly affected the K+ current. The endogenous voltage-dependent, outwardly rectifying K+ selective current in HEK 293/HEK 293 Phoenix cells was shown to arise from the Kv 3.1 channel, which is extensively expressed in brain and is involved in neurological diseases.
Conclusion: The results of the present study underscore that sensitivity of a given physiological phenomenon to the Cl- channel inhibitors NPPB, DIDS and niflumic acid may actually arise from an inhibition of Cl- channels but can also result from an inhibition of voltage-dependent K+ channels, including the Kv 3.1 channel. The use of niflumic acid as anti-inflammatory drug in patients with concomitant Kv 3.1 dysfunction may result contraindicated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000487282 | DOI Listing |
Biomacromolecules
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.
J Enzyme Inhib Med Chem
December 2024
College of Pharmacy, Sookmyung Women's University, Seoul, Korea.
Transcriptional enhanced associate domain (TEAD) transcription factors undergo auto-palmitoylation, which is critical to mediate their function and maintain stability. Targeting the palmitate binding pocket of TEAD holds considerable promise for drug discovery, and it can be characterised into three components: a conserved cysteine, a hydrophobic main pocket, and a hydrophilic side pocket. Endogenous palmitate and several known TEAD inhibitors interact with the cysteine and hydrophobic residues in the deep hydrophobic pocket.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
The objective of our research was to determine the effects of xanthohumol (XN), a flavonoid isolated from hops (), and the anti-inflammatory drug niflumic acid (NA), separately and in combination with each other, on the proliferation of human cancer cells. Additionally, so as to understand the mechanism underlying the anticancer properties of the tested compounds, their effects on the biophysical parameters of a model membrane were assessed. The cells were incubated with XN and NA at various concentrations, either individually or in combination with each other.
View Article and Find Full Text PDFSci Rep
October 2024
Shashi Town Health Center, Shaodong, 422813, Hunan, China.
Pharmaceutics
September 2024
Chemical Engineering Laboratory, Process Engineering Department, Faculty of Technology, University of Blida 1, Road of Soumaa, BP 270, Blida 09000, Algeria.
Although niflumic acid (NA) is one of the most used non-steroidal anti-inflammatory drugs, it suffers from poor solubility, low bioavailability, and significant adverse effects. To address these limitations, the complexation of NA with cyclodextrins (CDs) is a promising strategy. However, complexing CDs with low molecular weight drugs like NA can lead to low CE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!