A natural carbohydrate polymer, konjac glucomanan, has been extracted from commercial product and studied as a green corrosion inhibitor for AA5052 aluminium alloy in 3.5 wt% NaCl solution by high-performance gel permeation chromatography (GPC), thermo gravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectra, electrochemical measurement and surface characterization techniques. The results of GPC measurements suggest the weight-average molecular weight and the number-average molecular weight of KGM with 98.2% purity are 1.61 × 10 g/mol and 1.54 × 10 g/mol, respectively. Potentiodynamic polarization curves show konjac glucomanan behaves as a mixed-type inhibitor with dominant anodic effect and that its maximum efficiency at 200 ppm is 94%. Electrochemical impedance spectroscopy (EIS) studies reveal the resistance of oxide film is approximately two orders of magnitude greater than the resistance of adsorbed inhibitor layer and that they both increase with KGM concentration. Moreover, in-situ electrochemical noise (EN) detection demonstrates that the growth and propagation stages of the pitting corrosion germinating on metal surface are blocked by polysaccharide additive, which is confirmed by the surface analysis of aluminium alloy using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and Raman spectroscopy. At last, it is found that the addition of KGM makes it harder for water droplet containing NaCl to wet the metallic substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2018.01.092 | DOI Listing |
J Colloid Interface Sci
May 2018
Nanjing Milestone Pharma CO., LTD., Nanjing 210000, China.
A natural carbohydrate polymer, konjac glucomanan, has been extracted from commercial product and studied as a green corrosion inhibitor for AA5052 aluminium alloy in 3.5 wt% NaCl solution by high-performance gel permeation chromatography (GPC), thermo gravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectra, electrochemical measurement and surface characterization techniques. The results of GPC measurements suggest the weight-average molecular weight and the number-average molecular weight of KGM with 98.
View Article and Find Full Text PDFFood Chem
September 2017
College of Food Science, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Konjac glucomannan (KGM) is an important functional polysaccharide in food research. However, unstable dispersibility of KGM inhibits its in-depth study and wide application. In this study, a degraded KGM (100kGy-KGM), which showed excellent dispersibility and specific physicochemical properties, were obtained by γ-irradiation in a dosage of 100kGy.
View Article and Find Full Text PDFCarbohydr Polym
October 2016
College of Food Science, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Konjac glucomannan (KGM) is an important gelling agent in composite gels. This study aimed to investigate the effects of KGM molecular characteristics (molecular weight, size and conformation) on gelling properties of Tilapia myofibrillar protein (TMP). In this work, TMP composite gels were prepared under neutral pH with varying KGM (native KGM, 10kGy-KGM, 20kGy-KGM, and 100kGy-KGM) of different molecular characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!