Previous work has shown that 24 h duration odor preference learning, induced by one-trial training, generates a down-regulation of the GluN1 receptor in anterior piriform cortex at 3 h, and results in metaplastic unlearning if a second training trial is given at 3 h. The GluN1 receptor upregulates at 24 h so 24 h spaced training is highly effective in extending memory duration. The present study replicates the piriform cortex unlearning result in the olfactory bulb circuit and further studies the relationship between the initial training strength and its associated metaplastic effect. Intrabulbar infusions that block calcineurin or inhibit histone deacetylation normally produce extended days-long memory. If given during training, they are not associated with GluN1 downregulation at 3 h and do not recruit an unlearning process at that time. The two memory strengthening protocols do not appear to interact, but are also not synergistic. These outcomes argue that it is critical to understand the metaplastic effects of training in order to optimize training protocols in the service of either memory strengthening or of memory weakening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nlm.2018.02.003DOI Listing

Publication Analysis

Top Keywords

histone deacetylation
8
odor preference
8
glun1 receptor
8
piriform cortex
8
memory strengthening
8
training
7
memory
6
revisiting metaplasticity
4
metaplasticity roles
4
roles calcineurin
4

Similar Publications

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

HDC1 Promotes Primary Root Elongation by Regulating Auxin and K Homeostasis in Response to Low-K Stress.

Biology (Basel)

January 2025

Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.

Plants frequently encounter relatively low and fluctuating potassium (K) concentrations in soil, with roots serving as primary responders to this stress. Histone modifications, such as de-/acetylation, can function as epigenetic markers of stress-inducible genes. However, the signaling network between histone modifications and low-K (LK) response pathways remains unclear.

View Article and Find Full Text PDF

Mechanistic insight of curcumin: a potential pharmacological candidate for epilepsy.

Front Pharmacol

January 2025

Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia.

Recurrent spontaneous seizures with an extended epileptic discharge are the hallmarks of epilepsy. At present, there are several available anti-epileptic drugs (AEDs) in the market. Still no adequate treatment for epilepsy treatment is available.

View Article and Find Full Text PDF

Background: Tectorigenin (TEC) is a monomer of anthocyanin, which we found exhibits hepatoprotective effects. tRNA-derived fragments (tRFs) and ferroptosis play important roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). Recent discoveries have revealed that histone lactylation and acetylation play a crucial role in connecting cellular metabolism and epigenetic regulation through post-translational modification of histones.

View Article and Find Full Text PDF

Dynamic changes in DNA methylation are prevalent during the progression of breast cancer. However, critical alterations in aberrant methylation and gene expression patterns have not been thoroughly characterized. Here, we utilized guide positioning sequencing (GPS) to conduct whole-genome DNA methylation analysis in a unique human breast cancer progression model: MCF10 series of cell lines (representing benign/normal, atypical hyperplasia, and metastatic carcinoma).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!