Alternative motor responses can be prepared in parallel. Here, we used electroencephalography (EEG) to test whether the parallel preparation of alternative response options is modulated by their relative value. Participants performed a choice response task with three potential actions: isometric contraction of the left, the right, or both wrists. An imperative stimulus (IS) appeared after a warning cue, such that the initiation time of a required action was predictable, but the specific action was not. To encourage advanced preparation, the target was presented 200 ms prior to the IS, and only correct responses initiated within ±100 ms of the IS were rewarded. At baseline, all targets were equally rewarded and probable. Then, responses with one hand were made more valuable, either by increasing the probability that the left or right target would be required (Exp. 1; n = 31) or by increasing the reward magnitude of one target (Exp. 2, n = 36). We measured reaction times, movement vigor, and an EEG correlate of action preparation (value-based lateralized readiness potential) prior to target presentation. Participants responded earlier to more frequent and more highly rewarded targets, and movements to highly rewarded targets were more vigorous. The EEG was more negative over the hemisphere contralateral to the more repeated/rewarded hand, implying an increased neural preparation of more valuable actions. Thus, changing the value of alternative response options can lead to greater preparation of actions associated with more valuable outcomes. This preparation asymmetry likely contributes to behavioral biases that are typically observed toward repeated or rewarded targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2018.01.055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!