The relevance of the microenvironment in the initiation, promotion, and progression of cancer has been postulated. Mesenchymal stem cells (MSCs) have been identified as important components of the tumor stroma, which are capable of affecting the development of cancer through various mechanisms. In particular, MSCs immunosuppressive properties play an important role. It has been shown that bone marrow-derived and other healthy tissues-derived MSCs are capable of regulating the immune response by affecting the activation, maturation, proliferation, differentiation, and effector function of cells of the immune system, such as neutrophils, macrophages, dendritic cells, natural killer cells (NK) and T-lymphocytes. Similar mechanisms have been identified in MSCs associated with different types of tumors, where they generate an immunosuppressive microenvironment by decreasing the cytotoxic activity of T-lymphocytes and NK cells, skew macrophage differentiation towards an M2 phenotype, and decrease the secretion of Th1-type cytokines. Also, the cytokines, chemokines, and factors secreted by the transformed cells or other cells from the tumor stroma are capable of modulating the functions of MSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmhimx.2016.10.003 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Joint Osteopathy, Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, China.
Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China.
Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
Myocardial infarction is a condition where the heart muscle is damaged due to clogged coronary arteries. There are limited treatment options for treating myocardial infarction. Microneedle patches have recently become popular as a possibly viable therapy for myocardial.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.
Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!