There is a continuing debate on whether an antiviral immunity similar to vertebrate interferon response exists in invertebrates. Recent advances in penaeid immunology identified several new members of the Toll receptor family and one of these is LvToll3 (Litopenaeus vannamei Toll3). It is hypothesized in this study that LvToll3 responds to pathogen associated molecular patterns (PAMPs) such as dsRNA, which then activates certain antiviral pathways in penaeids. RNA interference (RNAi) was used to determine differences in the expression levels of specific genes putatively involved in the antiviral response through qPCR. Results showed that LvToll3 upregulation could be elicited through the introduction of double stranded RNA (dsRNA) regardless of sequence relative to initial levels in the 3rd hour. Furthermore, statistically intriguing trend in the overall expression of Vago 4/5 and Interferon regulatory factor (IRF) suggests that both these genes are affected by the expression of LvToll3. Dicer showed no statistical difference between the experimentally treated (LvToll3-dsRNA), positive control (GFP-dsRNA), and control (PBS) samples corroborating the assertion that dicer is part of another antiviral mechanism that acts in concert with Toll system. These findings suggests that LvToll3 plays a critical role in penaeid antiviral immunity when molecular patterns associated with viruses are detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dci.2018.01.020 | DOI Listing |
PLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.
View Article and Find Full Text PDFInsect Sci
January 2025
Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China.
Cuticular proteins are essential for cuticle formation, molting, and survival in insects. However, functional analysis of cuticular proteins in the melon aphid has been limited. In this study, we identified an endocuticle structural glycoprotein (ESG) AgSgAbd-2-like in the melon aphid Aphis gossypii, which is a member of the RR-1 subfamily of the CPR (cuticular protein containing the conserved Rebers-Riddiford motif) chitin-binding proteins.
View Article and Find Full Text PDFInsect Sci
January 2025
Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
Reproductive diapause is an insect survival strategy in which reproduction temporarily halts in response to adverse environmental changes. This process is characterized by arrested ovarian development and lipid accumulation in females. A reduction in juvenile hormone (JH) biosynthesis is known to initiate reproductive diapause, but its regulatory mechanism remains unclear.
View Article and Find Full Text PDFParasitol Res
January 2025
Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
Tick-borne encephalitis virus (TBEV) is flavivirus transmitted to the host via tick saliva which contains various molecules with biological impacts. One of such molecules is Iristatin, a cysteine protease inhibitor from Ixodes ricinus that has been shown to have immunomodulatory properties. To characterize Iristatin in the relation to TBEV, we investigate whether this tick inhibitor has any capacity to influence TBEV infection.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Physiology and Pharmacology, Children's Health Research Institute and London Health Sciences Centre Research Institute, London, ON, Canada.
In this chapter, we provide a method for silencing target genes in epidermal cells via RNA interference. Specifically, we describe a protocol for transfection-mediated delivery of small interfering RNA oligonucleotides (siRNA). Functional assays are indispensable to characterize the biological consequences of gene knockdowns, and we also provide a method to analyze alterations in cell adhesion properties, consequent to knockdown of genes involved in this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!