Spatio-temporal variation of anthropogenic marine debris on Chilean beaches.

Mar Pollut Bull

Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Larrondo 1281, Coquimbo, Chile; Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile. Electronic address:

Published: January 2018

We examined the hypothesis that in an emerging economy such as Chile the abundances of Anthropogenic Marine Debris (AMD) on beaches are increasing over time. The citizen science program Científicos de la Basura ("Litter Scientists") conducted three national surveys (2008, 2012 and 2016) to determine AMD composition, abundance, spatial patterns and temporal trends. AMD was found on all beaches along the entire Chilean coast. Highest percentages of AMD in all surveys were plastics and cigarette butts, which can be attributed to local sources (i.e. beach users). The Antofagasta region in northern Chile had the highest abundance of AMD compared with all other zones. Higher abundances of AMD were found at the upper stations from almost all zones. No significant tendency of increasing or decreasing AMD densities was observed during the 8years covered by our study, which suggests that economic development alone cannot explain temporal trends in AMD densities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2017.11.014DOI Listing

Publication Analysis

Top Keywords

anthropogenic marine
8
marine debris
8
amd
8
amd beaches
8
temporal trends
8
trends amd
8
amd densities
8
spatio-temporal variation
4
variation anthropogenic
4
debris chilean
4

Similar Publications

The Arctic environment plays a critical role in the global climate system and marine biodiversity. The region's ice-covered expanses provide essential breeding and feeding grounds for a diverse assemblage of marine species, who have adapted to thrive in these harsh conditions and consequently are under threat from global warming. The bearded seal (Erignathus barbatus), including two subspecies (E.

View Article and Find Full Text PDF

Sustainable management of riverine NO emission baselines.

Natl Sci Rev

February 2025

Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.

The riverine NO fluxes are assumed to linearly increase with nitrate loading. However, this linear relationship with a uniform EF is poorly constrained, which impedes the NO estimation and mitigation. Our meta-analysis discovered a universal NO emission baseline (EF = k/[NO ], k = 0.

View Article and Find Full Text PDF

The effects of warming on loggerhead turtle nesting counts.

J Anim Ecol

January 2025

Faculdade de Ciências da Universidade do Porto, Centro de Investigação em Ciências Geo-Espaciais (CICGE), Vila Nova de Gaia, Portugal.

Global trends in marine turtle nesting numbers vary by region, influenced by environmental or anthropogenic factors. Our study investigates the potential role of past temperature fluctuations on these trends, particularly whether warmer beaches are linked to increased nesting due to higher female production (since sea turtles have temperature-dependent sex determination). We selected the loggerhead turtle (Caretta caretta) due to its wide distribution, strong philopatry and vulnerability to environmental changes.

View Article and Find Full Text PDF

Infections caused by antibiotic-resistant bacteria (ARB) result in an estimated 1.27 million human deaths annually worldwide. Surface waters are impacted by anthropogenic factors, which contribute to the emergence and spread of ARB in the aquatic environment.

View Article and Find Full Text PDF

Ecological and health risk assessment of Sharm El-sheikh beach sediments, Red Sea coast.

Mar Pollut Bull

January 2025

Department of Marine Geology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Sharm El-Sheikh, located at the southern entrance of the Gulf of Aqaba, is a key tourist destination known for its mild climate and commitment to environmental initiatives, notably hosting COP27 in 2022. This study evaluates heavy metal contamination in beach sediments to assess environmental and human risks. Sampling was conducted at Sharm Port and El-Maya Bay, both popular tourist areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!