A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Objectively Differentiating Movement Patterns between Elite and Novice Athletes. | LitMetric

Objectively Differentiating Movement Patterns between Elite and Novice Athletes.

Med Sci Sports Exerc

School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, CANADA.

Published: July 2018

Introduction: Movement screens are frequently used to identify abnormal movement patterns that may increase risk of injury or hinder performance. Abnormal patterns are often detected visually based on the observations of a coach or clinician. Quantitative or data-driven methods can increase objectivity, remove issues related to interrater reliability and offer the potential to detect new and important features that may not be observable by the human eye. Applying principal component analysis (PCA) to whole-body motion data may provide an objective data-driven method to identify unique and statistically important movement patterns, an important first step to objectively characterize optimal patterns or identify abnormalities. Therefore, the primary purpose of this study was to determine if PCA could detect meaningful differences in athletes' movement patterns when performing a non-sport-specific movement screen. As a proof of concept, athlete skill level was selected a priori as a factor likely to affect movement performance.

Methods: Motion capture data from 542 athletes performing seven dynamic screening movements (i.e., bird-dog, drop-jump, T-balance, step-down, L-hop, hop-down, and lunge) were analyzed. A PCA-based pattern recognition technique and a linear discriminant analysis with cross-validation were used to determine if skill level could be predicted objectively using whole-body motion data.

Results: Depending on the movement, the validated linear discriminant analysis models accurately classified 70.66% to 82.91% of athletes as either elite or novice.

Conclusions: We have provided proof that an objective data-driven method can detect meaningful movement pattern differences during a movement screening battery based on a binary classifier (i.e., skill level in this case). Improving this method can enhance screening, assessment, and rehabilitation in sport, ergonomics, and medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1249/MSS.0000000000001571DOI Listing

Publication Analysis

Top Keywords

movement patterns
16
skill level
12
movement
10
whole-body motion
8
objective data-driven
8
data-driven method
8
detect meaningful
8
linear discriminant
8
discriminant analysis
8
patterns
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!