The stacking of alternating charged planes in ionic crystals creates a diverging electrostatic energy-a "polar catastrophe"-that must be compensated at the surface. We used scanning probe microscopies and density functional theory to study compensation mechanisms at the perovskite potassium tantalate (KTaO) (001) surface as increasing degrees of freedom were enabled. The as-cleaved surface in vacuum is frozen in place but immediately responds with an insulator-to-metal transition and possibly ferroelectric lattice distortions. Annealing in vacuum allows the formation of isolated oxygen vacancies, followed by a complete rearrangement of the top layers into an ordered pattern of KO and TaO stripes. The optimal solution is found after exposure to water vapor through the formation of a hydroxylated overlayer with ideal geometry and charge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aar2287 | DOI Listing |
J Neurol
January 2025
Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA.
Background: Longitudinal qualitative data on what matters to people with Parkinson's disease are lacking and needed to guide patient-centered clinical care and development of outcome measures.
Objective: To evaluate change over time in symptoms, impacts, and relevance of digital measures to monitor disease progression in early Parkinson's.
Methods: In-depth, online symptom mapping interviews were conducted with 33 people with early Parkinson's at baseline and 1 year later to evaluate (A) symptoms, (B) impacts, and (C) relevance of digital measures to monitor personally relevant symptoms.
J Pharm Policy Pract
January 2025
College of Pharmacy, University of Health Sciences and Pharmacy, St Louis, MO, USA.
Background: The sustainability of community pharmacies in the United States depends, in large part, on policies enacted by the Centers for Medicare and Medicaid Services (CMS). In 2003, CMS policy allowed retrospective direct and indirect remuneration (DIR) fees to manage costs. From 2024, only prospective DIR fees are permitted.
View Article and Find Full Text PDFNeuron
January 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA. Electronic address:
Autoimmune neurology is a rapidly expanding field driven by the discovery of neuroglial autoantibodies and encompassing a myriad of conditions affecting every level of the nervous system. Traditionally, autoantibodies targeting intracellular antigens are considered markers of T cell-mediated cytotoxicity, while those targeting extracellular antigens are viewed as pathogenic drivers of disease. However, recent advances highlight complex interactions between these immune mechanisms, suggesting a continuum of immunopathogenesis.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.
Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.
View Article and Find Full Text PDFCereb Cortex
January 2025
School of AIDE, Center for Brain Science and Applications, IIT Jodhpur, NH-62, Surpura Bypass Rd, Karwar, Rajasthan 342030, India.
Optimal brain function is shaped by a combination of global information integration, facilitated by long-range connections, and local processing, which relies on short-range connections and underlying biological factors. With aging, anatomical connectivity undergoes significant deterioration, which affects the brain's overall function. Despite the structural loss, previous research has shown that normative patterns of functions remain intact across the lifespan, defined as the compensatory mechanism of the aging brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!