AI Article Synopsis

  • The stacking of charged planes in ionic crystals leads to a "polar catastrophe," causing an imbalance in electrostatic energy that needs to be addressed at the surface.
  • Researchers investigated the compensation mechanisms of the potassium tantalate (KTaO) (001) surface using advanced microscopy and computational methods.
  • Results showed that the surface can rapidly transition from an insulator to a metal and undergo significant structural changes, with the optimal surface state achieved after exposure to water vapor, creating a beneficial hydroxylated overlayer.

Article Abstract

The stacking of alternating charged planes in ionic crystals creates a diverging electrostatic energy-a "polar catastrophe"-that must be compensated at the surface. We used scanning probe microscopies and density functional theory to study compensation mechanisms at the perovskite potassium tantalate (KTaO) (001) surface as increasing degrees of freedom were enabled. The as-cleaved surface in vacuum is frozen in place but immediately responds with an insulator-to-metal transition and possibly ferroelectric lattice distortions. Annealing in vacuum allows the formation of isolated oxygen vacancies, followed by a complete rearrangement of the top layers into an ordered pattern of KO and TaO stripes. The optimal solution is found after exposure to water vapor through the formation of a hydroxylated overlayer with ideal geometry and charge.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aar2287DOI Listing

Publication Analysis

Top Keywords

compensation mechanisms
8
mechanisms perovskite
8
polarity compensation
4
surface
4
perovskite surface
4
surface ktao001
4
ktao001 stacking
4
stacking alternating
4
alternating charged
4
charged planes
4

Similar Publications

Background: Longitudinal qualitative data on what matters to people with Parkinson's disease are lacking and needed to guide patient-centered clinical care and development of outcome measures.

Objective: To evaluate change over time in symptoms, impacts, and relevance of digital measures to monitor disease progression in early Parkinson's.

Methods: In-depth, online symptom mapping interviews were conducted with 33 people with early Parkinson's at baseline and 1 year later to evaluate (A) symptoms, (B) impacts, and (C) relevance of digital measures to monitor personally relevant symptoms.

View Article and Find Full Text PDF

Background: The sustainability of community pharmacies in the United States depends, in large part, on policies enacted by the Centers for Medicare and Medicaid Services (CMS). In 2003, CMS policy allowed retrospective direct and indirect remuneration (DIR) fees to manage costs. From 2024, only prospective DIR fees are permitted.

View Article and Find Full Text PDF

Toward curing neurological autoimmune disorders: Biomarkers, immunological mechanisms, and therapeutic targets.

Neuron

January 2025

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Autoimmune neurology is a rapidly expanding field driven by the discovery of neuroglial autoantibodies and encompassing a myriad of conditions affecting every level of the nervous system. Traditionally, autoantibodies targeting intracellular antigens are considered markers of T cell-mediated cytotoxicity, while those targeting extracellular antigens are viewed as pathogenic drivers of disease. However, recent advances highlight complex interactions between these immune mechanisms, suggesting a continuum of immunopathogenesis.

View Article and Find Full Text PDF

Rational Design of Prussian Blue Analogues for Ultralong and Wide-Temperature-Range Sodium-Ion Batteries.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.

Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.

View Article and Find Full Text PDF

Optimal brain function is shaped by a combination of global information integration, facilitated by long-range connections, and local processing, which relies on short-range connections and underlying biological factors. With aging, anatomical connectivity undergoes significant deterioration, which affects the brain's overall function. Despite the structural loss, previous research has shown that normative patterns of functions remain intact across the lifespan, defined as the compensatory mechanism of the aging brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!