Adjuvant tamoxifen treatment revolutionized the management of estrogen receptor (ER)-positive breast cancers to prevent cancer recurrence; however, drug resistance compromises its clinical efficacy. The mechanisms underlying tamoxifen resistance are not fully understood, and no robust biomarker is available to reliably predict those who will be resistant. Here, we study BQ323636.1, a novel splice variant of the NCOR2 gene, and evaluate its efficacy in predicting tamoxifen resistance in patients with breast cancer. A monoclonal anti-BQ323636.1 antibody that specifically recognizes the unique epitope of this splice variant was generated for mechanistic studies and for analysis by immunohistochemistry on tissue microarrays of two independent cohorts of 358 patients with more than 10 years clinical follow-up data, who had ER-positive primary breast cancer and received adjuvant tamoxifen treatment. An orthotopic mouse model was also used. Overexpression of BQ323636.1 conferred resistance to tamoxifen in both and in an orthotopic mouse model. Mechanistically, coimmunoprecipitation showed BQ323636.1 could bind to NCOR2 and inhibit the formation of corepressor complex for the suppression of ER signaling. Nuclear BQ3232636.1 overexpression in patients samples was significantly associated with tamoxifen resistance ( = 1.79 × 10, sensitivity 52.9%, specificity 72.0%). In tamoxifen-treated patients, nuclear BQ323636.1 overexpression was significantly correlated with cancer metastasis and disease relapse. Nuclear BQ323636.1 was also significantly associated with poorer overall survival ( = 1.13 × 10) and disease-specific survival ( = 4.02 × 10). These findings demonstrate that BQ323636.1 can be a reliable biomarker to predict tamoxifen resistance in patients with ER-positive breast cancer. .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6038915 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-17-2259 | DOI Listing |
Alzheimers Dement
December 2024
B.S.A. College of Engineering and Technology, Mathura, Uttar Pradesh, India.
Background: Cognitive dysfunction emerges as a manifestation of reduced estrogen levels following ovariectomy in an individual. However, the conventional use of estrogen replacement therapy could increase the risk of breast cancer and thromboembolism. Icariin is a natural compound that has been reported to be a neuroprotective agent against dementia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.
Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.
View Article and Find Full Text PDFBioconjug Chem
January 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.
View Article and Find Full Text PDFANZ J Surg
December 2024
Northern Sydney Cancer Centre, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia.
Curr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!