The identity/recognition of tRNAs, in the context of aminoacyl tRNA synthetases (and other molecules), is a complex phenomenon that has major implications ranging from the origins and evolution of translation machinery and genetic code to the evolution and speciation of tRNAs themselves to human mitochondrial diseases to artificial genetic code engineering. Deciphering it via laboratory experiments, however, is difficult and necessarily time- and resource-consuming. In this study, we propose a mathematically rigorous two-pronged in silico approach to identifying and classifying tRNA positions important for tRNA identity/recognition, rooted in machine learning and information-theoretic methodology. We apply Bayesian Network modeling to elucidate the structure of intra-tRNA-molecule relationships, and distribution divergence analysis to identify meaningful inter-molecule differences between various tRNA subclasses. We illustrate the complementary application of these two approaches using tRNA examples across the three domains of life, and identify and discuss important (informative) positions therein. In summary, we deliver to the tRNA research community a novel, comprehensive methodology for identifying the specific elements of interest in various tRNA molecules, which can be followed up by the corresponding experimental work and/or high-resolution position-specific statistical analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871937PMC
http://dx.doi.org/10.3390/life8010005DOI Listing

Publication Analysis

Top Keywords

trna
8
trna molecules
8
bayesian network
8
distribution divergence
8
divergence analysis
8
genetic code
8
intrinsic properties
4
properties trna
4
molecules deciphered
4
deciphered bayesian
4

Similar Publications

Gammaherpesviruses are oncogenic pathogens that establish lifelong infections. There are no FDA-approved vaccines against Epstein-Barr virus or Kaposi sarcoma herpesvirus. Murine gammaherpesvirus-68 (MHV68) infection of mice provides a system for investigating of gammaherpesvirus pathogenesis and testing vaccine strategies.

View Article and Find Full Text PDF

The subfamily Mileewinae in China comprises one tribe (Mileewini), four genera (, , , ), and 71 species, yet only 11 mitochondrial genomes have been published. This study aimed to elucidate ambiguous diagnostic traits in traditional taxonomy and examined phylogenetic relationships among genera by sequencing mitochondrial genomes from 16 species. The lengths of the mitochondrial genomes ranged from 14,532 to 15,280 bp, exhibiting an AT content of 77.

View Article and Find Full Text PDF

L. 1754, a thorny deciduous tree of Fabaceae, contains various chemical compounds such as alkaloids, flavonoids, and triterpenoids and exhibits anti-depressant, anti-inflammatory, and antidiabetic activities. However, genomic data of are limited.

View Article and Find Full Text PDF

The genus boasts abundant germplasm resources and comprises numerous species. Among these, medicinal plants of this genus, which have a long history, have garnered attention of scholars. This study sequenced and analyzed the chloroplast genomes of six species of medicinal plants (, , , , , and , respectively) to explore their interspecific relationships.

View Article and Find Full Text PDF

is a well-known opportunistic pathogen, responsible for various nosocomial infections. UOL-KIMZ-24 was previously isolated from a clinical specimen, collected from Lahore General Hospital, Lahore (LGH), Pakistan, dated 3rd March, 2022. During the initial screening for antimicrobial susceptibility, the UOL-KIMZ-24 was found a multiple drug resistant (MDR) strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!