Lysyl Oxidases: Functions and Disorders.

J Glaucoma

Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas (C.S.I.C.)/Universidad Autónoma de Madrid, Madrid, Spain.

Published: July 2018

Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize lysyl and hydroxylysyl residues in collagen and elastin, as a first step in the stabilization of these extracellular matrix proteins through the formation of covalent cross-linkages, an essential process for connective tissue maturation. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, being genetically different protein products with a high degree of homology in the catalytic carboxy terminal end and a more variable amino terminal proregion. Intensive investigation in the last years has delineated the main biological functions of these enzymes and their involvement in several pathologies including fibrosis, cancer, and ocular disorders. This review article summarizes the major findings on the role of LOX isoforms, with particular focus on their contribution to the development and progression of human disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1097/IJG.0000000000000910DOI Listing

Publication Analysis

Top Keywords

lysyl oxidases
8
oxidases functions
4
functions disorders
4
disorders lysyl
4
lox
4
oxidases lox
4
lox copper-dependent
4
copper-dependent enzymes
4
enzymes oxidize
4
oxidize lysyl
4

Similar Publications

LOX-induced tubulointerstitial fibrosis via the TGF-β/LOX/Snail axis in diabetic mice.

J Transl Med

January 2025

Department of Basic Medical Sciences, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.

Background: The partial epithelial-mesenchymal transition (EMT) is emerging as a significant mechanism in diabetic nephropathy (DN). LOX is a copper amine oxidase conventionally thought to act by crosslinking collagen. However, the role of LOX in partial EMT and fibrotic progression in diabetic nephropathy has not been investigated experimentally.

View Article and Find Full Text PDF

In homeostatic conditions, the basal progenitor cells of the esophagus differentiate into a stratified squamous epithelium. However, in the setting of acid exposure or inflammation, there is a marked failure of basal cell differentiation, leading to basal cell hyperplasia. We have previously shown that lysyl oxidase (LOX), a collagen crosslinking enzyme, is upregulated in the setting of allergic inflammation of the esophagus; however, its role beyond collagen crosslinking is unknown.

View Article and Find Full Text PDF

Covalent Inhibitor Screening for Targeting LOXL2: Studied by Virtual Screening and Experimental Validation.

Recent Pat Anticancer Drug Discov

January 2025

Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China.

Background: Lysyl oxidase-like 2 (LOXL2) is a metalloenzyme that catalyzes oxidative deamination ε-amino group of lysine. It has been found that LOXL2 is a promotor for the metastasis and invasion in kinds of tumors. Previous studies show that disulfide bonds are important components in LOXL2, and their bioactivity can be regulated by those bonds.

View Article and Find Full Text PDF

Purpose: This study sought to analyze the effect of allele mutations and gene functions specific to glaucoma susceptibility among Africans.

Methods: Potentially relevant studies were retrieved from major bibliographic databases (PubMed, Scopus, and Web of Science). Data were extracted and study-specific estimates were meta-analyzed using various models to obtain pooled results.

View Article and Find Full Text PDF

Hyperglycemia Inhibits AAA Expansion: Examining the Role of Lysyl Oxidase.

Am J Physiol Heart Circ Physiol

December 2024

B. Timothy Baxter, MD: University of Nebraska Medical Center, 68198 Nebraska Medicine, Omaha, Ne 68198-2500 (402-639-0144).

Abdominal aortic aneurysm (AAA) is a common, progressive and potentially fatal dilation of the most distal aortic segment. Multiple studies with longitudinal follow-up of AAA have identified markedly slower progression among patients affected with diabetes. Understanding the molecular pathway responsible for the growth inhibition could have implications for therapy in nondiabetic AAA patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!