Exposures to radiofrequency (RF) energy above 6 GHz are characterized by shallow energy penetration, typically limited to the skin, but the subsequent increase in skin temperature is largely determined by heat transport in subcutaneous layers. A detailed analysis of the energy reflection, absorption, and power density distribution requires a knowledge of the properties of the skin layers and their variations. We consider an anatomically detailed model consisting of 3 or 4 layers (stratum corneum, viable epidermis plus dermis, subcutaneous fat, and muscle). The distribution of absorbed power in the different tissue layers is estimated based on electrical properties of the tissue layers inferred from measurements of reflected millimeter wavelength energy from skin, and literature data for the electrical properties of fat and muscle. In addition, the thermal response of the model is obtained using Pennes bioheat equation as well as a modified version incorporating blood flow rate-dependent thermal conductivity that provides a good fit to experimentally-found temperature elevations. A greatly simplified 3-layer model (Dermis, Fat, and Muscle) that assumes surface heating in only the skin layer clarifies the contribution of different tissue layers to the increase in surface skin temperature. The model shows that the increase in surface temperature is, under many circumstances, determined by the thermal resistance of subcutaneous tissues even though the RF energy may be deposited almost entirely in the skin layer. The limits of validity of the models and their relevance to setting safety standards are briefly discussed. Bioelectromagnetics. 39:173-189, 2018. © 2018 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bem.22110 | DOI Listing |
MAGMA
January 2025
Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.
View Article and Find Full Text PDFCurr Obes Rep
January 2025
Metabolism and Body Composition, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.
Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.
FASEB J
January 2025
Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands.
Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Background: β-Hydroxy-β-methyl butyrate (HMB) is a metabolite of the amino acid leucine, known for its ergogenic effects on body composition and strength. Despite these benefits, the magnitude of these effects remains unclear due to variability among studies. This umbrella review aims to synthesize meta-analyses investigating the effects of HMB on body composition and muscle strength in adults.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA.
Background: Sarcomas are a rare, complex group of malignancies characterized by numerous clinical and pathological features. Sarcomas originate from various tissues such as fat, muscle, bone, nerves, blood vessels and connective tissues. Typically, the treatment of sarcomas consists of surgery, chemotherapy, and radiation therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!