Elucidation of the systems biology foundation underlying the effect of Fangji, which are multi-herbal traditional Chinese medicine (TCM) formulas, is one of the major aims in the field. The numerous bioactive ingredients of a Fangji deal with the multiple targets of a complex disease, which is influenced by a number of genes and their interactions with the environment. Genome-wide association study (GWAS) is an unbiased approach for dissecting the genetic variants underlying complex diseases and individual response to a given treatment. GWAS has great potential for the study of systems biology from the point of view of genomics, but the capacity using current analysis models is largely handicapped, as evidenced by missing heritability. Recent development of a full genetic model, in which gene-gene interactions (dominance and epistasis) and gene-environment interactions are all considered, has addressed these problems. This approach has been demonstrated to substantially increase model power, remarkably improving the detection of association of GWAS and the construction of the molecular architecture. This analysis does not require a very large sample size, which is often difficult to meet for a GWAS of treatment response. Furthermore, this analysis can integrate other omic information and allow for variations of Fangji, which is very promising for Fangjiomic study and detection of the sophisticated molecular architecture of the function of Fangji, as well as for the delineation of the systems biology of personalized medicine in TCM in an unbiased and comprehensive manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256273 | PMC |
http://dx.doi.org/10.1038/aps.2017.137 | DOI Listing |
Nano Lett
January 2025
Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.
View Article and Find Full Text PDFHematol Oncol
January 2025
University of California Irvine, Irvine, California, USA.
Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.
View Article and Find Full Text PDFProteins
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
Vector-borne diseases pose a severe threat to human life, contributing significantly to global mortality. Understanding the structure-function relationship of the vector proteins is pivotal for effective insecticide development due to their involvement in drug resistance and disease transmission. This study reports the structural and dynamic features of D1-like dopamine receptors (DARs) in disease-causing mosquito species, such as Aedes aegypti, Culex quinquefasciatus, Anopheles gambiae, and Anopheles stephensi.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
Lysosomal membrane protein LYCHOS (lysosomal cholesterol signaling) translates cholesterol abundance to mammalian target of rapamycin activation. Here we report the 2.11-Å structure of human LYCHOS, revealing a unique fusion architecture comprising a G-protein-coupled receptor (GPCR)-like domain and a transporter domain that mediates homodimer assembly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!