Hydrogen-Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π-π Interactions.

Angew Chem Int Ed Engl

Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China.

Published: April 2018

AI Article Synopsis

  • Researchers developed hydrogen-bonded organic aromatic frameworks (HOAFs) that enable ultralong phosphorescence (UOP) in metal-free porous materials under normal conditions.
  • They achieved a remarkable phosphorescence lifetime of 79.8 ms for one type of material (PhTCz-1), which continues to emit light for several seconds after the initial excitation.
  • The study highlights the ability of these porous materials for oxygen sensing and offers a new principle for designing stable metal-free luminescent materials.

Article Abstract

Ultralong organic phosphorescence (UOP) based on metal-free porous materials is rarely reported owing to rapid nonradiative transition under ambient conditions. In this study, hydrogen-bonded organic aromatic frameworks (HOAFs) with different pore sizes were constructed through strong intralayer π-π interactions to enable ultralong phosphorescence in metal-free porous materials under ambient conditions for the first time. Impressively, yellow UOP with a lifetime of 79.8 ms observed for PhTCz-1 lasted for several seconds upon ceasing the excitation. For PhTCz-2 and PhTCz-3, on account of oxygen-dependent phosphorescence quenching, UOP could only be visualized in N , thus demonstrating the potential of phosphorescent porous materials for oxygen sensing. This result not only outlines a principle for the design of new HOFs with high thermal stability, but also expands the scope of metal-free luminescent materials with the property of UOP.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201800697DOI Listing

Publication Analysis

Top Keywords

porous materials
12
hydrogen-bonded organic
8
organic aromatic
8
aromatic frameworks
8
ultralong phosphorescence
8
intralayer π-π
8
π-π interactions
8
metal-free porous
8
ambient conditions
8
frameworks ultralong
4

Similar Publications

Inhalable Metal-Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment.

ACS Nano

January 2025

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.

Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases.

View Article and Find Full Text PDF

A non-interpenetrated mesoporous hydrogen-bonded organic framework constructed with 1,3,5-tri(4-carboxyphenyl)benzene.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.

The discovery of porous molecular solids has been constantly hindered by phase transformation and interpenetration. Here, we crystallize two molecules with three substituted carboxylic groups. A mesoporous, non-interpenetrated HOF that is constructed from 1,3,5-tri(4-carboxyphenyl)benzene (TCPB) is discovered and reported for the first time.

View Article and Find Full Text PDF

Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.

View Article and Find Full Text PDF

Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold.

iScience

January 2025

Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.

This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.

View Article and Find Full Text PDF

We report herein the synthesis and full spectroscopic characterization of two AB-corrole phosphonic acids. Thanks to the presence of a phosphonic acid functional group at the 10--position, the corroles were covalently linked to the hexanuclear Zr clusters of a PCN-222 metal-organic framework (MOF). After the insertion of cobalt into the corrole macrocycle, the metal complexes are able to bind small volatile molecules such as carbon monoxide (CO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!