Ultralong organic phosphorescence (UOP) based on metal-free porous materials is rarely reported owing to rapid nonradiative transition under ambient conditions. In this study, hydrogen-bonded organic aromatic frameworks (HOAFs) with different pore sizes were constructed through strong intralayer π-π interactions to enable ultralong phosphorescence in metal-free porous materials under ambient conditions for the first time. Impressively, yellow UOP with a lifetime of 79.8 ms observed for PhTCz-1 lasted for several seconds upon ceasing the excitation. For PhTCz-2 and PhTCz-3, on account of oxygen-dependent phosphorescence quenching, UOP could only be visualized in N , thus demonstrating the potential of phosphorescent porous materials for oxygen sensing. This result not only outlines a principle for the design of new HOFs with high thermal stability, but also expands the scope of metal-free luminescent materials with the property of UOP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201800697 | DOI Listing |
ACS Nano
January 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
The discovery of porous molecular solids has been constantly hindered by phase transformation and interpenetration. Here, we crystallize two molecules with three substituted carboxylic groups. A mesoporous, non-interpenetrated HOF that is constructed from 1,3,5-tri(4-carboxyphenyl)benzene (TCPB) is discovered and reported for the first time.
View Article and Find Full Text PDFJ Dent Sci
December 2024
Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan.
Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.
View Article and Find Full Text PDFiScience
January 2025
Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.
This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.
View Article and Find Full Text PDFDalton Trans
January 2025
Univ. Bourgogne Europe, CNRS, ICMUB (UMR 6302) Institut de Chimie Moléculaire de l'Université de Bourgogne, 9, Avenue Alain Savary, 21 000 Dijon, France.
We report herein the synthesis and full spectroscopic characterization of two AB-corrole phosphonic acids. Thanks to the presence of a phosphonic acid functional group at the 10--position, the corroles were covalently linked to the hexanuclear Zr clusters of a PCN-222 metal-organic framework (MOF). After the insertion of cobalt into the corrole macrocycle, the metal complexes are able to bind small volatile molecules such as carbon monoxide (CO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!