Norovirus outbreaks are associated with the consumption of contaminated shellfish, and so efficient methods to recover and detect infectious norovirus in shellfish are important. The Proteinase K digestion method used to recover norovirus from shellfish, as described in the ISO 15216, would be a good candidate but its impact on the virus capsid integrity and thus infectivity was never examined. The aim of this study was to assess the impact of the Proteinase K digestion method, and of the heat treatment component of the method alone, on norovirus (genogroups I and II) and MS2 bacteriophage capsid integrity. A slightly modified version of the ISO method was used. RT-qPCR was used for virus detection following digestion of accessible viral RNA using RNases. MS2 phage infectivity was measured using a plaque assay. The effect of shellfish digestive glands (DG) on recovery was evaluated. In the presence of shellfish DG, a reduction in MS2 phage infectivity of about 1 log was observed after the Proteinase K digestion method and after heat treatment component alone. For norovirus GII and MS2 phage, there was no significant loss of genome following the Proteinase K digestion method but there was a significant 0.24 log loss of norovirus GI. In the absence of shellfish DG, the reduction in MS2 phage infectivity was about 2 log, with the addition of RNases resulting in a significant loss of genome for all tested viruses following complete Proteinase K digestion method and the heat treatment alone. While some protective effect from the shellfish DG on viruses was observed, the impact on capsid integrity and infectivity suggests that this method, while suitable for norovirus genome detection, may not completely preserve virus infectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12560-018-9336-6 | DOI Listing |
J Morphol
February 2025
Department of Biology, Boston University, Boston, Massachusetts, USA.
Environmentally cued hatching (ECH) is widespread in animals and requires regulation of hatching mechanisms. Enzymatic digestion of the egg membrane is a common hatching mechanism in vertebrates and invertebrates. In amphibians and fishes, hatching enzymes (HE) are synthesized and released by hatching gland cells (HGC), whose functional ontogeny determines when hatching can occur.
View Article and Find Full Text PDFBiofactors
January 2025
Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan.
SARS-CoV-2-related proteins, ACE2 and TMPRSS2, are determinants of SARS-CoV-2 infection. Although these proteins are expressed in oral-related tissues, their expression patterns and modulatory mechanisms in the salivary glands remain unknown. We herein showed that full-length ACE2, which has both a fully functional enzyme catalytic site and high-affinity SARS-CoV-2 spike S1-binding sites, was more highly expressed in salivary glands than in oral mucosal epithelial cells and the lungs.
View Article and Find Full Text PDFGenes (Basel)
January 2025
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
The Pacific white shrimp () is economically significant, and its growth is regulated by multiple factors. Carboxypeptidase B (CPB) is related to protein digestion, but its gene sequence and features in are not fully understood. This study aimed to explore the molecular and functional properties of CPB in .
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Biotechnological Control of Pests Laboratory, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, 46100, Spain.
The Spodoptera genus is defined as the pest-rich genus because it contains some of the most destructive lepidopteran crop pests, characterized by a wide host range. During feeding, the caterpillars release small amounts of oral secretion (OS) onto the wounded leaves. This secretion contains herbivore-induced molecular patterns (HAMPs) that activate the plant defense response, as well as effectors that may inhibit or diminish the plant's anti-herbivory response.
View Article and Find Full Text PDFCells
January 2025
Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain.
Lysosomes are subcellular compartments characterised by an acidic pH, containing an ample variety of acid hydrolases involved in the recycling of biopolymers. Among these hydrolases, lysosomal proteases have merely been considered as end-destination proteases responsible for the digestion of waste proteins, trafficked to the lysosomal compartment through autophagy and endocytosis. However, recent reports have started to unravel specific roles for these proteases in the regulation of initially unexpected biological processes, both under physiological and pathological conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!