Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignant cancers with high incidence and mortality. Current reliable effective diagnostic and prognostic biomarkers are very limited in clinic. Emerging evidence indicates that dysregulated expression of the long non-coding RNAs (lncRNAs) was examined in various types of cancer including ESCC. ESCC associated lncRNA _1 (ESCCAL_1) was first time identified to be increased expression in ESCC, and therefore named by our research team. However, its potential function in the progression of ESCC remains unclear. In this study, we investigated the effect of ESCCAL_1 knockdown on ESCC tumorigenicity using a xenograft mouse model and explored the underlying molecular mechanism. Here we showed that ESCCAL_1 knockdown significantly inhibited EC9706 cell growth in nude mice. Interestingly, we also found that reduced expression of ESCCAL_1 resulted in distinct alterations of relative phosphorylation level of kinases (p-p38α, p-JNK, p-FAK and p-Src), and significant changes of the expression level of apoptosis-related proteins (p53, BAX, Bcl-2 and Caspase-3). In summary, our results suggest that lncRNA ESCCAL_1 is a potential diagnostic and prognostic target of ESCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787510PMC
http://dx.doi.org/10.18632/oncotarget.23153DOI Listing

Publication Analysis

Top Keywords

long non-coding
8
esophageal squamous
8
squamous cell
8
cell carcinoma
8
xenograft mouse
8
mouse model
8
diagnostic prognostic
8
lncrna esccal_1
8
esccal_1 knockdown
8
escc
7

Similar Publications

Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy with increasing incidence and poor survival rates, primarily due to late-stage diagnosis. This cancer often develops from Barrett's Esophagus (BE), a precancerous condition linked to chronic gastroesophageal reflux disease (GERD). The transition from BE to EAC is a complex multistep process involving numerous genetic, epigenetic, and molecular changes that lead to the malignant transformation of the esophageal epithelium.

View Article and Find Full Text PDF

Chronic pain is a significant public health concern that diminishes patients' quality of life and imposes considerable socioeconomic costs. Effective pharmacological treatments for ongoing pain are limited. Recent studies have indicated that various models of chronic pain-such as neuropathic pain, inflammatory pain, and pain associated with cancer-have abnormal levels of long noncoding RNAs (lncRNAs).

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are associated with tumorigenesis and progression. One of these, short nucleolar RNA host gene 14 (SNHG14), has exhibited significant prognostic value due to its aberrant expression across various tumor types. This study investigates the expression patterns, survival outcomes, and tumor stages associated with SNHG14 across various cancers, employing data from the Genotype-Tissue Expression and The Cancer Genome Atlas databases.

View Article and Find Full Text PDF

The tumor microenvironment (TME) plays a crucial role in the development and progression of gastric cancer (GC). The TME comprises a network of cancer cells, immune cells, fibroblasts, endothelial cells, and extracellular matrix components, which provide a supportive niche for cancer cells. This study investigates the role of TME-derived exosomal competitive endogenous RNAs (ceRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as major regulating agents in GC development.

View Article and Find Full Text PDF

Long non-coding RNA (lncRNA) TINCR has been shown to play a crucial regulatory role in various tumors. However, its specific mechanism of action in cutaneous squamous cell carcinoma (CSCC) remains unclear. This study aimed to explore the role of lncRNA TINCR in CSCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!