Ammonia physiology is important to numerous disease states including urea cycle disorders and hepatic encephalopathy. However, many unknowns persist regarding the ammonia response to common and potentially significant physiologic influences, such as food. Our aim was to evaluate the dynamic range of ammonia in response to an oral protein challenge in healthy participants. We measured blood and breath ammonia at baseline and every hour for 5.5 hours. Healthy men (N = 22, aged 18 to 24 years) consumed a 60 g protein shake (high dose); a subset of 10 consumed a 30 g protein shake (moderate dose) and 12 consumed an electrolyte drink containing 0 g protein (control). Change in blood ammonia over time varied by dose (p = 0.001). Difference in blood ammonia was significant for control versus high (p = 0.0004) and moderate versus high (p = 0.03). Change in breath ammonia over time varied by dose (p < 0.0001). Difference in breath ammonia was significant for control versus moderate (p = 0.03) and control versus high (p = 0.0003). Changes in blood and breath ammonia were detectable by fast, minimally-invasive (blood) or non-invasive (breath) point-of-care ammonia measurement methods. These pilot data may contribute to understanding normal ammonia metabolism. Novel measurement methods may aid research into genetic and metabolic ammonia disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5803234PMC
http://dx.doi.org/10.1038/s41598-018-20503-0DOI Listing

Publication Analysis

Top Keywords

breath ammonia
12
ammonia response
12
blood breath
8
ammonia
8
healthy men
8
protein shake
8
blood ammonia
8
ammonia time
8
time varied
8
varied dose
8

Similar Publications

Human breath gas analysis is a noninvasive disease diagnostic approach used to identify different pathological conditions in the human body. Monitoring breath acetone (CHO) and ammonia (NH) as biomarkers is vital in diagnosing diabetes mellitus and liver disorders, respectively. In this article, the quartz-enhanced photoacoustic spectroscopy (QEPAS) technique is proposed and demonstrated for measuring CHO and NH in human exhaled breath samples.

View Article and Find Full Text PDF

Exhaled breath offers an interesting matrix of low invasive sampling of potentially relevant information about the organism's metabolism in the form of volatile organic compounds (VOC). The VOC can be exhaled by the ructus (Islam et al., 2023) or passed the blood-lung barrier for expiration through the lungs.

View Article and Find Full Text PDF

The pirarucu is one of the very few obligate air-breathing fish, employing a gigantic, highly vascularized air-breathing organ (ABO). Traditionally, the ABO is thought to serve mainly for O uptake (ṀO), with the gills providing the major route for excretion of CO (ṀCO) and N-waste. However, under aquatic hypercapnia, a common occurrence in its natural environment, branchial ṀCO to the water may become impaired.

View Article and Find Full Text PDF

Metal oxide-based chemiresistive gas sensors are expected to play a significant role in assessing human health and evaluating food spoilage. However, the high operating temperature, insufficient limit of detection (LOD), and long response/recovery time restrict their broad application. Herein, 3D BiMoO/2D Eg-CN heterocomposites are developed for advanced NH gas sensors with RT operational mode.

View Article and Find Full Text PDF

Porous and Homogeneous Nanoheterojunction-Accumulating PdO@ZnO Structure for Exhaled Breath Ammonia Sensing.

Inorg Chem

November 2024

Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030024, Shanxi, P. R. China.

The functional gas sensor device plays a pivotal role in intelligent medical treatment, among which metal oxide semiconductors are widely studied because of their inexpensiveness and ease of fabrication. However, the metal oxide sensors present a significant challenge in detecting NH at ppm levels within complex exhaled gases. Herein, the ZnO/PdO- series were prepared by in situ loading palladium particles and calcining using nano-ZIF-8 as a precursor, which not only provided more transport path for ammonia adsorption but also achieved homogeneous nanoheterojunction accumulation structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!