We investigated the effects of incorporation of surface pre-reacted glass ionomer (S-PRG) filler in tissue conditioner (TC) on Candida albicans adhesion. We prepared specimens containing 0, 5, 10, or 20 wt% of S-PRG filler, and measured the amount of C. albicans on the surface using a colony forming unit (CFU) assay and scanning electron microscopic images. In addition, we measured the consistency, penetration depth, and surface roughness (Ra). CFU values for 10 and 20 wt% were significantly lower than that for the control (p<0.05). Hyphal density on the surface was greater in the control. The 10 and 20 wt% specimens showed significantly higher consistency and Ra, lower penetration depth ratio than control (p<0.05). These results suggest that incorporation of S-PRG filler may reduce C. albicans adhesion onto TC surface; however, the optimal amount of filler is dictated by the influence of filler incorporation on mechanical and surface characters of TC.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.2017-171DOI Listing

Publication Analysis

Top Keywords

incorporation surface
8
surface pre-reacted
8
pre-reacted glass
8
glass ionomer
8
filler tissue
8
tissue conditioner
8
candida albicans
8
albicans adhesion
8
s-prg filler
8
ionomer filler
4

Similar Publications

Blink completeness and rate in dry eye disease: An investigator-masked, prospective registry-based, cross-sectional, prognostic study.

Cont Lens Anterior Eye

January 2025

Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand. Electronic address:

Purpose: To investigate the prognostic ability of blink rate and the proportion of incomplete blinking to predict dry eye disease diagnosis, as defined by the TFOS DEWS II criteria.

Methods: A total of 453 community residents (282 females, 171 males; mean ± SD age, 37 ± 19 years) were recruited in an investigator-masked, prospective registry-based, cross-sectional, prognostic study. Dry eye symptomology, tear film quality, and ocular surface characteristics were assessed in a single clinical session, and blink parameters evaluated by an independent masked observer.

View Article and Find Full Text PDF

Engineered sulfonated porous carbon/cellulose nanofiber hybrid membrane for high-efficiency osmotic energy conversion applications.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations.

View Article and Find Full Text PDF

Bifunctional modified bacterial cellulose-based hydrogel through sequence-dependent crosslinking towards enhanced antibacterial and cutaneous wound healing.

Int J Biol Macromol

January 2025

Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Tai'an 271018, PR China; School of Pharmacy, the Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China. Electronic address:

Chronic wounds caused by microbial infection have emerged as a major challenge on patients and medical health system. Bacterial cellulose (BC) characterized by its excellent biocompatibility and porous network, holds promise for addressing complex wound issues. However, lack of inherent antibacterial activity and cross-linking sites in the molecular network of BC have constrained its efficacy in hydrogel design and treatment of bacterial-infected wounds.

View Article and Find Full Text PDF

Defect engineering is considered one of the most powerful strategies for regulating the catalytic activity of electrocatalysts. A deep understanding of the defect-involved mechanism in electrocatalytic process is of great importance but remains a challenging task. In this study, an anionic Se-vacancy (V) was introduced into iron diselenide (FeSe) nanoarrays, enabling the catalyst to exhibit improved electrocatalytic performance for sulfion oxidation reaction (SOR).

View Article and Find Full Text PDF

Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!