Influence of food availability on mate-guarding behaviour of ladybirds.

Bull Entomol Res

Department of Zoology,Ladybird Research Laboratory, University of Lucknow,Lucknow,Uttar Pradesh-226007,India.

Published: December 2018

A recent study on ladybird, Menochilus sexmaculatus (Fabricius) demonstrates that males perform post-copulatory mate guarding in the form of prolonged mating durations. We investigated whether food resource fluctuation affects pre- and post-copulatory behaviour of M. sexmaculatus. It has not been studied before in ladybirds. For this, adults were subjected to prey resource fluctuations sequentially at three levels: post-emergence (Poe; 10 days), pre-mating (Prm; 24 h) and post-mating (Pom; 5 days; only female). The food resource conditions at each level could be any one of scarce, optimal or abundant. Pre-copulatory and post-copulatory behaviour, and reproductive output were assessed. Post-emergence and pre-mating nutrient conditions significantly influenced the pre-copulatory behaviour. Males reared on scarce post-emergence conditions were found to require significantly higher number of mating attempts to establish mating unlike males in the other two food conditions. Under scarce post-emergence and pre-mating conditions, time to commencement of mating and latent period were high but opposite result was obtained for mate-guarding duration. Fecundity and per cent egg viability were more influenced by post-mating conditions, with scarce conditions stopping oviposition regardless of pre-mating and post-emergence conditions. Present results indicate that pre- and post-copulatory behaviour of ladybird is plastic in nature in response to food resource fluctuations.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007485318000056DOI Listing

Publication Analysis

Top Keywords

food resource
12
post-copulatory behaviour
12
pre- post-copulatory
8
resource fluctuations
8
conditions
8
post-emergence pre-mating
8
scarce post-emergence
8
post-emergence conditions
8
conditions scarce
8
behaviour
5

Similar Publications

Addressing Water Scarcity to Achieve Climate Resilience and Human Health.

Integr Environ Assess Manag

January 2025

Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.

Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.

View Article and Find Full Text PDF

Exploring Tetraselmis chui microbiomes-functional metagenomics for novel catalases and superoxide dismutases.

Appl Microbiol Biotechnol

January 2025

Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.

The focus on microalgae for applications in several fields, e.g. resources for biofuel, the food industry, cosmetics, nutraceuticals, biotechnology, and healthcare, has gained increasing attention over the last decades.

View Article and Find Full Text PDF

This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.

View Article and Find Full Text PDF

Fine particulate matter (PM2.5) is known to exacerbate chronic respiratory disorders, primarily by inducing inflammatory responses and mucus overproduction. Perilla leaves are reported to have significant health benefits, such as antioxidant, antibacterial, and antiallergic properties, attributed to phenolic compounds that vary depending on genetic diversity.

View Article and Find Full Text PDF

Wheat gluten is a by-product of the wheat starch industry, rich in bioactive peptides. Spray drying is an effective method for improving the stability of bioactive compounds. So, the aim of this study was to produce gluten hydrolysate by different proteases (alcalase, pancreatin, and trypsin) at different times (40-200 min).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!