In aquatic ecosystems, biological indicators are used in concert with nutrient concentration data to identify habitat impairments related to cultural eutrophication. This approach has been less commonly implemented in coastal areas due to the dominance of physical conditions in structuring biological assemblage data. Here, we describe the use of the stable isotopic composition of (Say), the eastern mudsnail, as an indicator of cultural eutrophication for 40 locations in coastal estuaries in New York. We found N enrichment in mudsnail tissue where watersheds had high population densities, land use patterns were more urbanized, and when sampling sites were adjacent to wastewater treatment plant discharges. Stable carbon isotopes were responsive to salinity and watershed forest cover, with more saline sites reflecting a predominantly C or algal carbon isotopic signature and more forested sites a lighter isotopic signature reflecting greater inputs of C terrestrial detrital carbon. Mudsnail nitrogen isotopic composition had a high level of separation between more affected and pristine watersheds (from 6.6 to 14.1‰), highlighting its utility as an indicator. We thus propose that stable isotope values of estuarine biota, such as the eastern mudsnail, can be used in concert with water quality data to identify areas where improvements in water quality are needed and can also be used to identify sources of detrital carbon to estuarine environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775774 | PMC |
http://dx.doi.org/10.2134/jeq2017.05.0214 | DOI Listing |
Front Biosci (Elite Ed)
December 2024
Polytechnic School, University of Vale do Itajaí (Univali), Itajaí, SC 88302-202, Brazil.
Background: Enhanced biological phosphorus removal (EBPR) systems utilize phosphorus-accumulating organisms (PAOs) to remove phosphorus from wastewater since excessive phosphorus in water bodies can lead to eutrophication. This study aimed to characterize a newly isolated PAO strain for its potential application in EBPR systems and to screen for additional biotechnological potential. Here, sequencing allowed for genomic analysis, identifying the genes and molecules involved, and exploring other potentials.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA.
The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon.
Cyanobacteria, also known as blue-green algae, are a diverse phylum of photosynthetic, Gram-negative bacteria and one of the largest microbial taxa. These organisms produce cyanotoxins, which are secondary metabolites that can have significant impacts on both human health and the environment. While toxins like Microcystins and Cylindrospermopsins are well-documented and have been extensively studied, other cyanotoxins, including those produced by and , remain underexplored.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Ifremer, PHYTOX Research Unit, F-44000 Nantes, France.
Harmful algal blooms (HABs) formed by toxic microalgae have seriously threatened marine ecosystems and food safety and security in recent years. Among them, has attracted the attention of scientists and society due to its acute and rapid neurotoxicity in mice. Herein, the growth and gymnodimine A (GYM-A) production of were investigated in diverse culture systems with different surface-to-volume (S/V) ratios and nitrogen/phosphorus concentrations.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program, 1750 Forest Drive, Suite 130, Annapolis, Maryland 21401, United States.
Many coastal ecosystems have suffered from cultural eutrophication and dead zones. In the Chesapeake Bay, water quality degradation is manifested in low dissolved oxygen, poor water clarity, and decreased submerged aquatic vegetation acreage. This research combines long-term monitoring data, science-based assessment methods, and novel data analysis approaches (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!