Objective: To investigate the protective effect of chitosan oligosaccharide (COS) on acute lung injury (ALI) caused by blast injury, and explore possible molecular mechanisms.

Methods: A mouse model of blast injury-induced ALI was established using a self-made explosive device. Thirty mice were randomly assigned to control, ALI and ALI + COS groups. An eight-channel physiological monitor was used to determine the mouse physiological index. Enzyme linked immunosorbent assay was used to measure serum inflammatory factors. Hematoxylin-eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, immunofluorescence staining, real time-polymerase chain reaction and western blot assay were used to detect inflammatory reactions, oxidative stress and apoptosis.

Results: Mice were sacrificed 24 hours after successful model induction. Compared with the ALI group, the heart rate, respiration and PCO2 were significantly lower, but the PO2, TCO2 and HCO3- were significantly higher in the ALI + COS group. Compared to ALI alone, COS treatment of ALI caused a significant decrease in the wet/dry lung weight ratio, indicating a reduction in lung edema, inflammatory cell infiltration, levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-4, IL-6 and nuclear factor kappa B mRNA and protein expression were reduced and IL-10 mRNA and protein expression was increased (P < 0.05). COS significantly inhibited reactive oxygen species, MDA5 and IREα mRNA and protein expressions, cell apoptosis and Bax and Caspase-3 mRNA and protein expressions, and significantly increased superoxide dismutase-1 mRNA expression, and Bcl-2 and Caspase-8 mRNA and protein expression (all P<0.05). COS significantly increased dimethylarginine dimethylaminohydrolase 1 (DDAH1) protein expression, and reduced ADMA and p38 protein expression (P< 0.05).

Conclusion: Blast injury causes inflammation, oxidative stress and apoptosis in the lung tissues of mice. COS has protective effects on blast injury-induced ALI, possibly by promoting DDAH1 expression and inhibiting ADMA and mitogen-activated protein kinase pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802901PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192135PLOS

Publication Analysis

Top Keywords

mrna protein
20
ali cos
12
protein expression
12
chitosan oligosaccharide
8
acute lung
8
lung injury
8
blast injury
8
ali
8
ali caused
8
compared ali
8

Similar Publications

RNA methylation modifications in neurodegenerative diseases: Focus on their enzyme system.

J Adv Res

January 2025

Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China. Electronic address:

Background: Neurodegenerative diseases (NDs) constitute a significant public health challenge, as they are increasingly contributing to global mortality and morbidity, particularly among the elderly population. Pathogenesis of NDs is intricate and multifactorial. Recently, post-transcriptional modifications (PTMs) of RNA, with a particular focus on mRNA methylation, have been gaining increasing attention.

View Article and Find Full Text PDF

Exosomes Derived from Human Adipose Mesenchymal Stem Cells act as a therapeutic target for Oral Submucous Fibrosis.

J Stomatol Oral Maxillofac Surg

January 2025

Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077 Tamil Nadu, India. Electronic address:

Oral submucosal fibrosis is a highly malignant oral condition that necessitates the use of sophisticated therapeutic procedures. OSF is a multifactorial precancerous condition induced by areca nut chewing, deficiencies in vitamins and trace minerals, immunological aspects, and hereditary factors. Adipose tissue-derived mesenchymal stem cells possess the capability for multidirectional activation and are extensively distributed throughout the body.

View Article and Find Full Text PDF

Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields.

View Article and Find Full Text PDF

IGF2BPs-regulated TIN2 confers the malignant biological behaviors of gastric cancer cells.

Tissue Cell

December 2024

Department of Pathology, The Fourth Hospital of Changsha, Changsha, Hunan 410006, PR China. Electronic address:

Background: Telomere maintenance is an important feature of tumor cells. Telomeric-repeat binding factor 1 interaction nuclear protein 2 (TIN2), a key member of the shelterin proteins, functions in regulating telomere structure, length and function. Our work sought to investigate the role of TIN2 in controlling gastric cancer (GC) malignant biological behaviors.

View Article and Find Full Text PDF

Background: Peripheral nerve injury (PNI) is a common clinical problem that can result in partial or complete loss of sensory, motor, and autonomic functions. Tetrahydropalmatine (THP), a Corydalis yanhusuo-derived phytochemical alkaloid, possesses hypnotic, soothing, analgesic, and other effects, but little is known about the effect of THP on moderating peripheral nerve regeneration and its possible underlying mechanism of action.

Purpose: In this study, we aim to elucidate the protective function of THP on PNI and further reveal the underlying pharmacological mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!