The rates of opioid prescription and use have continued to increase over the last few decades resulting in a greater number of opioid tolerant patients. Treatment of acute pain from surgery and injury is a clinical challenge for these patients. Several pain management strategies including prescribing increased opioids are used clinically with limited success; all currently available strategies have significant limitations. Many opioids are a substrate for p-glycoprotein (p-gp), an efflux transporter at the blood-brain barrier (BBB). Increased p-gp is associated with a decreased central nervous system uptake and analgesic efficacy of morphine. Our laboratory previously found that acute peripheral inflammatory pain (PIP) induces p-gp trafficking from the nucleus to the luminal surface of endothelial cells making up the BBB concomitant with increased p-gp activity and decreased morphine analgesic efficacy. In the current study, we tested whether PIP-induced p-gp trafficking could contribute to decreased opioid efficacy in morphine tolerant rats. A 6-day continuous dosing of morphine from osmotic minipumps was used to establish morphine tolerance in female rats. PIP induced p-gp trafficking away from nuclear stores showed a 2-fold increase in morphine tolerant rats. This observation suggests that p-gp trafficking contributes to the decreased morphine analgesic effects in morphine tolerant rats experiencing an acute pain stimulus. Attenuating p-gp trafficking during an acute pain stimulus could improve pain management by increasing the amount of opioid that could reach CNS analgesic targets and decrease the need for the dose escalation that is a serious challenge in pain management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802945 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192340 | PLOS |
J Pharm Sci
May 2024
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan. Electronic address:
To clarify the regulation of drug absorption by the enteric nervous system, we investigated how adrenergic agonists (adrenaline (ADR), clonidine (CLO), dobutamine (DOB)) and dibutyryl cAMP (DBcAMP) affected P-glycoprotein (P-gp) function by utilizing isolated rat jejunal sheets and Caco-2 cell monolayers. ADR and CLO significantly decreased the secretory transport (P) of rhodamine-123 and tended to decrease the transport via P-gp (P) and passive transport (P). In contrast, DBcAMP significantly increased and DOB tended to increase P and both tended to increase Pand P.
View Article and Find Full Text PDFPLoS One
October 2023
UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR SEN, URCA, Reims cedex, France.
Multidrug resistance (MDR) is a major obstacle to successful cancer chemotherapy. A typical form of MDR is due to the overexpression of membrane transport proteins., such as Glycoprotein-P (P-gp), resulting in an increased drug efflux preventing drug cytotoxicity.
View Article and Find Full Text PDFInt J Mol Sci
August 2023
Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane's raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels.
View Article and Find Full Text PDFAAPS PharmSciTech
April 2022
Department of Pharmacy, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Hefei, Anhui, 230012, People's Republic of China.
Multidrug resistance (MDR) is a key determinant for hepatocellular carcinoma chemotherapy failure. P-glycoprotein is one of the main causes of MDR by causing drug efflux in tumor cells. In order to solve this thorny problem, we prepared a sorafenib-loaded polylactic acid-glycolic acid (PLGA) - D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) nanoparticles (SPTNs).
View Article and Find Full Text PDFJ Pharm Sci
December 2021
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan. Electronic address:
Although the functions of small intestine are largely regulated by enteric nervous system (ENS), an independent intrinsic innervation, as well as central nervous system (CNS), the neural regulation of drug absorption from the small intestine still remains to be clarified. To obtain some information on it, the effect of adrenergic agonists on P-glycoprotein (P-gp) function was investigated by utilizing a vascular-luminal perfused rat small intestine. Adrenaline significantly decreased the secretion of rhodamine-123 (R-123) into the intestinal lumen, but dibutyryl cAMP (DBcAMP) significantly enhanced R-123 secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!